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Summary

This report describes the development of adaptive importance sampling tech-
niques for estimating false alarm probabilities of detectors that use space-time
adaptive processing (STAP) algorithms. The first paper to appear on this topic
is [9]; it lays the groundwork for developing powerful estimation algorithms,
based on the work in fast simulation carried out by the author of [5]. The re-
port also presents some new detection algorithms that are intended to be robust
under various conditions.

Fast simulation using importance sampling methods have been notably suc-
cessful in the study of conventional constant false alarm rate radar detectors,
and in several other applications. The principal objectives here are to examine
the viability of using importance sampling methods for STAP detection, develop
these methods into powerful analysis and design algorithms, and use them for
synthesizing novel detection structures.

Several STAP detectors have been investigated from the standpoint of ap-
plying importance sampling to characterize their performances. Various bias-
ing techniques have also been devised and implemented, resulting in significant
speed-ups in performance evaluation compared to conventional Monte Carlo
methods. The important problem of detector threshold determination has been
addressed and solved by fast simulation.

Robust variants such as the envelope-law and geometric-mean detectors for
STAP processing have been suggested, their CFAR property established, and
performance thoroughly evaluated using IS techniques. It has been shown that
their detection performances are decidedly better than those of their conven-
tional square-law counterparts when training data are contaminated by interfer-
ers, while maintaining almost equal detection performances under homogeneous
conditions. The work reported here paves the way to development of more
advanced estimation techniques that can facilitate design of powerful and ro-
bust detection algorithms designed to counter hostile and heterogenous clutter
environments.

During the pendency of the contract, which started in late 2004, the PI and
his associates have presented their results at various conferences, in the UK,
USA, Europe, and China. One journal paper1 is due to appear in the IEEE

1A pre-print manuscript copy is attached at the end of this report. Conference presentations
have not been included here.
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Transactions on AES in January 2007 and two more journal manuscripts are
to be shortly submitted for review. Owing to unavoidable circumstances the
contract has had to be terminated prematurely. Given the satisfactory results
obtained in this short time frame, it is hoped that more work will be carried
out along the same lines in the present research area.
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Chapter 1

Importance sampling for
STAP detection analysis
and design - the AMF

1.1 Introduction

Estimation of false alarm probabilities of detection algorithms that employ
space-time processing is examined here using forced Monte Carlo or importance
sampling simulation (IS). Space-time adaptive processing (STAP) algorithms
are of much importance for radar detection. They are notoriously intensive
from a computational point of view, with the more advanced (and robust) ones
being also analytically difficult to quantize, [3]. Therefore it is appropriate to
attempt to develop fast simulation methods that could be used in their analysis
and design.

In this chapter we use lessons learnt from developing IS techniques for char-
acterizing conventional constant false alarm rate (CFAR) detectors, [5], and
describe an experiment in applying them to STAP detection. The starting (and
ending) point of this unpretentious effort is the celebrated adaptive matched
filter (AMF) derived in [1] and which represents the arrayed version of the
workhorse cell averaging CFAR detector for conventional radar signal process-
ing algorithms. The false alarm probability (FAP) performance of the AMF
detector is known in integral form and can be numerically computed to any
desired accuracy. Thus it forms a suitable basis for validating our simulation
experiments. Two specific IS methods (described in the sequel) are presented
and the better (and also easier) one is implemented. On a general note, IS is
the chief simulation methodology for rare event estimation. It is an enduring
method that has distinguished itself in several areas of science and engineering.
Briefly, IS works by biasing original probability distributions in ways that ac-
celerate the occurrences of rare events, conducting simulations with these new
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distributions, and then compensating the obtained results for the changes made.
The principal consequence of this procedure is that unbiased probability esti-
mates with low variances are obtained quickly. The main task in IS therefore
is determination of good simulation distributions for an application, either as a
one-shot feat or adaptively. Simulations performed using such distributions can
provide enormous speed-ups if they are chosen with due care and mathematical
precision. Indeed, if applied successfully, simulation lengths needed to estimate
very low probabilities become (only) weakly dependent on the actual proba-
bilities. It is thus possible to evaluate any probability in reasonable amounts
of simulation time. There have been more recent attempts in the literature,
for example [13], [14], to apply IS for FAP estimation of conventional CFAR
detectors with varying degrees of success.

During the conduct of simulations reported herein, some issues concerning
the adaptive IS algorithms used arise, and these are discussed briefly. More in-
vestigation is required into them. However, the positive outcome of the methods
used is that excellent match with numerical results is obtained. The succeeding
sections provide a short statement of the AMF algorithm, how IS biasing can
be performed to hasten false alarm events, description of the so called g-method
which is a conditional IS technique developed originally for studying sums of
random variables ([6]), the fast algorithms used, how inverse IS can be used
to estimate (and therefore design) detector thresholds, simulation results, and
a concluding discussion. The work carried out in this chapter has appeared in
[9].

1.2 The AMF detector

In a radar system consisting of a linear array of Ns antenna elements, a burst of
Nt pulses is transmitted and each element receives as many return samples in
any one range gate. The NsNt = N samples are complex (because of I and Q
channel processing) and are referred to as the primary data. They may contain
a target and represent the range gate to be tested. The samples are arranged
in an N × 1 column vector and denoted as x. The target return is modelled as
consisting of a known direction vector s with an unknown complex amplitude in
addition to clutter, interference, and noise. There are L other N -length complex
vectors, called the training data, obtained from as many nearby range gates and
assumed to be free of target signal. These are denoted as x(l), l = 1, . . . , L.
It is assumed from now on that the training data is free of other targets or
contamination1. The primary and secondary data vectors are assumed to be
jointly independent and complex Gaussian, sharing the N×N covariance matrix
R = E{XX†}, where the superscript † denotes complex conjugate transpose.

1In the second chapter, detection performance is carried out for training data contaminated
by interfering targets.
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Under these assumptions the AMF detection test, as obtained in [1], is given by

|s†R̂−1x|2
s†R̂−1s

H1

≷
H0

η (1.1)

where
R̂ ≡ 1

L

∑L

l=1
x(l)x(l)†

is the estimated covariance matrix of x based on the training data (also referred
to as sample matrix), and η is a threshold used to set the FAP at some desired
level. This test has the CFAR property. The FAP α of the test is known to be
given by

α =
L!

(L−N + 1)!(N − 2)!

∫ 1

0

xL−N+1(1− x)N−2

(1 + η x/L)L−N+1
dx (1.2)

which can be used to numerically determine the threshold setting for a desired
FAP. As shown in [1], the test in (1.1) can be rewritten as

|s†R̂−1x|2
H1

≷
H0

η s†R̂−1s

= η s†R̂−1R̂R̂−1s

= η s†R̂−1 1
L

∑L

l=1
x(l)x(l)†R̂−1s

=
η

L

∑L

l=1
s†R̂−1x(l)x(l)†R̂−1s

=
η

L

∑L

l=1
|s†R̂−1x(l)|2 (1.3)

This is in the form of a vector (or, array) version of the usual CA-CFAR test.
The LHS is a square law detector, being the output of a matched filter (matched
to the direction s in which the array is steered) for incoherent detection using
the so-called sample matrix inversion (SMI) beamformer weights R̂−1s. The
RHS represents a cell averaging term. Further details on these issues can be
found in the references mentioned above.

1.3 False alarm probability estimation using IS

Two methods to quickly estimate FAPs are two-dimensional (2-d) biasing and
the conditional g-method procedure, described in this section.

1.3.1 2-d biasing

To estimate FAP using IS, we make the following observations. Suppose each
complex sample of a training vector is scaled by a real number θ1/2. This has
the effect of scaling the covariance matrix estimate R̂ by θ. Therefore, as far
as the covariance estimate is concerned, both sides of the test in (1.3) remain

3



unaffected by the scaling. However, each training vector being scaled by θ1/2

results in a scaling of the RHS by θ. Hence choosing θ less than unity will have
the effect of compressing the density function of the random threshold of the
test. Further, a scaling of each complex component of the primary vector by
a real a1/2 will achieve a scaling of the LHS of the test by a. Thus, choosing
a larger and θ smaller than unity will achieve an increase in the frequency
of occurrence of a false alarm event during simulation. The IS optimization
problem will be a two-parameter one.

The (unbiased) IS estimator, using (1.1), can be expressed as

α̂ =
1
K

∑K

1
1(|s†R̂−1X|2 > η s†R̂−1s) W (X,XL; a, θ); ∼ f? (1.4)

where the notation ∼ f? means that all random variables are drawn from biased
distributions, and XL ≡ (X(1), . . . ,X(L))T with K denoting length of the IS
simulation. In setting up their joint densities, we use the fact that the FAP
of the AMF has the CFAR property and is independent of the true covariance
matrix R. This is true under the assumption of Gaussian distributions for the
data. In such a case, the simulation of the AMF test can be carried out for data
possessing a diagonal covariance matrix I, denoting the N ×N identity matrix.
Therefore, primary and training data can be generated as complex vectors with
independent components. The unbiased joint densities are

f(x) =
e−x†x

πN
and f(xL) =

e−
∑L

1 x(l)†x(l)

πLN

so that

f(x,xL) =
e−x†x−∑L

1 x(l)†x(l)

π(L+1)N

With scaling performed as described above, the biased joint density takes the
form

f?(x,xL) =
e−

1
a x†x− 1

θ

∑L
1 x(l)†x(l)

π(L+1)NaNθLN

resulting in the weighting function

W (X,XL; a, θ) , f(x,xL)
f?(x,xL)

= CaNθLNeA/aeB/θ (1.5)

where
A ≡ x†x, B ≡

∑L

1
x(l)†x(l), and C ≡ e−(A+B)

The variance of the IS estimator α̂ can be expressed as

var α̂ =
1
K

[I(ν)− α2] (1.6)
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where ν is the vector biasing parameter (a, θ)T ∈ [1,∞) × (0, 1]. Denoting by
A the false alarm event in (1.4), the quantity I is given by

I(ν) = E?{1(A)W 2(X,XL; ν)}
= E{1(A)W (X,XL;ν)} (1.7)

where the expectation E? proceeds over biased distributions. Minimization
of var α̂ with respect to the biasing parameters is equivalent to minimization
of I and is described in the Appendix. Although not implemented here, this
description has been included since it is foreseen that such a method could be
useful in situations wherein the g-method might be difficult to apply.

1.3.2 The g-method estimator

This method exploits knowledge of underlying distributions more effectively,
yielding a more powerful estimator. Additional advantages are that only a
scalar parameter optimization problem needs to be tackled and the inverse IS
problem (for threshold optimization or selection) can be easily solved. The FAP
can be written as

α = P (|s†R̂−1X|2 > η s†R̂−1s|H0)

= E{P (|s†R̂−1X|2 > η s†R̂−1s|XL,H0)}
, E{g(XL)} (1.8)

Note that the conditioning in the second step above is equivalent to the condition
that a covariance matrix estimate is given. We proceed to estimate α using the
form in the third step above.

With the condition in mind it is easy to show, assuming that X is rotationally
invariant and Gaussian, that the random variable s†R̂−1X , w†X is distributed
as CN 1(0,w†Rw) with independent real and imaginary components, and the
weight vector w = R̂−1s. The random variable Y , |s†R̂−1X|2 therefore is
exponential and has density function

f(y|XL, H0) =
e−y/w†Rw

w†Rw
, y ≥ 0

Therefore

g(XL) = P (Y ≥ η s†R̂−1s|XL,H0)

= e−η s†R̂−1s/w†Rw

Note that if R̂ = R, then g(XL) = e−η and this is the FAP of the AMF when
the covariance matrix is known. As discussed before, we are simulating with
homogeneous data possessing an identity covariance matrix, that is, with R = I.
The g-method IS estimator then takes the form

α̂g =
1
K

∑K

1
g(XL)W (XL; θ)
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=
1
K

∑K

1
e−η DW (XL; θ); ∼ f? (1.9)

where

D ≡ s†R̂−1s
|w|2

=
s†R̂−1s

s†(R̂−1)2s
(1.10)

Choosing the (single) biasing parameter θ < 1 thus produces a decrease in D,
thereby causing a higher frequency of occurrence of the false alarm event or,
more appropriately in this case, a larger value of the g-function. Note that use
of the g-method obviates the need to bias primary data vectors. Determination
of a good value of θ proceeds as before. The weighting function is simply

W (xL; θ) = θLNe−(1−1/θ)B (1.11)

which can be deduced from (1.5) by setting a = 1. The scaling θ is optimized
by

θm+1 = θm − δθ

Î ′g(θm)

Î ′′g (θm)
(1.12)

which is just a one-dimensional version of (1.16). Estimates of the I-function
and its derivatives are given by

Îg(θ) =
1
K

∑K

1
g2(XL)W 2(XL; θ); ∼ f?

Î ′g(θ) =
1
K

∑K

1
g2(XL)W (XL; θ)Wθ(XL; θ); ∼ f?

Î ′′g (θ) =
1
K

∑K

1
g2(XL)W (XL; θ)Wθθ(XL; θ); ∼ f?

See appendix 1.5 for definition of the above quantities.

Simulation gain

A useful measure of the effectiveness of any IS procedure is the simulation
gain Γ. It is the ratio of simulation lengths required by conventional MC and
IS estimators to achieve the same error variance. Setting the variance in (1.6)
equal to (α−α2)/k (being the MC variance) where k denotes the length required
by the MC estimator, yields the gain

Γ =
α− α2

I(ν)− α2

While the simulation gain is useful in learning how much faster than MC an IS
technique is in terms of simulation length, it also serves the purpose of comparing
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different IS estimators. In actual simulations, an estimate of Γ is made by using
the estimates for α and I. The g-method estimator has simulation gain given
by

Γg =
α− α2

Ig(θ)− α2

where Ig = E?{g2(XL)W 2(XL; θ)}, and it can be estimated during simula-
tion. It always has a smaller variance and consequently larger gain than the
IS estimator discussed in the previous section. Indeed, without IS (W = 1),
Ig = E{g2(XL)} < E{g(XL)} = α. That Ig < I with IS was proved in [5] for
conventional CFAR detectors. The proof in the case of the detectors considered
here is similar, and will be omitted.

1.3.3 Inverse IS and threshold determination

The inverse problem, namely that of finding by fast simulation the value of
detector threshold η satisfying a prescribed FAP, is readily solved using the g-
method estimator. This is done by minimizing the stochastic objective function

J(η) = [α̂g(η)− αo]2

where αo is a desired FAP. An example is shown in Figure 1.1. It is clear that
all detection algorithms that involve a threshold crossing will possess objective
functions that have the general behaviour shown, assuming of course that the
FAP estimate is a decreasing function of its argument ηg. Minimization of J
with respect to η is carried out by the algorithm

ηm+1 = ηm + δη
αo − α̂g(ηm)

α̂′g(ηm)
, m = 1, 2, . . . (1.13)

where δη is a step-size parameter and the derivative estimator in the denomi-
nator is given by

α̂′g(ηm) = − 1
K

∑K

1
D e−ηDW (XL; θ); ∼ f? (1.14)

with the prime indicating derivative with respect to η. Note in passing that
this derivative estimator actually estimates (negative of) the probability density
function of the AMF statistic on the left hand side of (1.1) under H0.

1.4 Numerical results

The FAP α obtained by direct numerical integration of (1.2) is shown in Fig-
ure 1.2 and is used for comparing IS results, which are displayed in the remaining
figures. The AMF detector consists of L = 704 trainng vectors each of length
N = 352. Shown in Figure 1.3 is one instance of adaptive IS estimation of FAP
for a (known) threshold of η = 56.50432. Figures 1.4 and 1.5 depict results from
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Figure 1.2: Numerically computed FAP of the AMF detector.

8



0 20 40 60 80 100
10

−7

10
−6

10
−5

iteration index for adaptation

F
A

P
 e

st
im

at
e 

of
 α

AMF, L = 704, N = 352 

Figure 1.3: Convergence of FAP using adaptive IS algorithms.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

T
hr

es
ho

ld
 e

st
im

at
es

  η

recursions

AMF :  L = 704, N = 352

α
o
 = 10−7 

10−2 

10−3 

10−4 

10−5 

10−6 

10−1 

56.50

66.2395

46.8741

37.3215

27.8572

18.482

9.1963

Figure 1.4: Threshold optimization for AMF detector using inverse IS.

9



0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

recursions

F
A

P
 e

st
im

at
es

, −
lo

g 10
α η=56.50432

Figure 1.5: FAP estimates resulting from threshold optimization algorithms.

implementing the inverse IS algorithms. These are estimated threshold settings
and associated FAPs respectively. It is evident that match with the results in
Figure 1.2 is excellent and this has been numerically confirmed.

Optimum biasing parameters are shown in Figure 1.6 and simulation gains
obtained in Figure 1.7. Shown in Figure 1.8 is the gain as function of FAP. The
number of trials K needed to provide an accuracy of ±10% with 95% confidence
is shown in Figure 1.9.

1.4.1 Discussion

The IS simulation results obtained here appear deceptively smooth and certainly
beg an obvious question. Indeed, an artifice has been employed here to generate
them. It was used by the first author in previous work on capacity estimation of
MIMO channels and elsewhere, and found to be extremely useful. In conducting
rare-event simulations of systems that involve signal processing operations that
are mathematically complex, there are two principal issues that contribute to
simulation time. These have to be dealt with effectively. The first issue concerns
the rare event itself whose probability is being sought, and this can of course
be handled by suitable IS techniques. The second concerns the computational
intensity that accompanies the signal processing. The two are not unrelated.

In the case of STAP detectors, the chief processing burden is from inversion
of the sample matrix. It is a daunting task to conduct conventional Monte
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Carlo simulations that involve several millions of trials to estimate low FAPs,
with as many matrix inversions. Assuming that a good IS scheme can reduce
the number of trials to, say, only a few thousands would still be computationally
demanding (a case in point being the three thousand 352 × 352 matrices that
were inverted here). This is the point at which IS departs from conventional
Monte Carlo in a subtle but important manner. It is almost totally useless to
run the same random variables through a system in a straight MC simulation.
With IS however, much can be learnt by repeatedly using the (same) random
variables. In fact, this is one of the powerful features that adaptive IS (and
inverse IS) can embed into complex system simulation.

But how does an IS scheme become effective in the first place? Assume
that we have a biasing scheme that promises to be effective once the param-
eters of the biasing distributions have been optimized. For large systems (in
the sense of number of random inputs involved), running truly randomized IS
algorithms adaptively could become demanding as pointed out above. If sys-
tem performance can be characterized in terms of certain random ‘metrics’ (we
use the word with a slight abuse of terminology), then these metrics can be
pre-computed for a given set of input variables, and used repeatedly (which, in
complex systems such as STAP detectors eases the computational burden) in
adaptive biasing optimization algorithms. These latter algorithms themselves
usually require no more than 100 iterations and can be extremely fast. Resulting
IS simulation gains can be simultaneously estimated and these tell us whether
we need more or less pre-generated variables to achieve certain accuracies. Ad-
justing this latter number, biasing and system parameter optimization (inverse
IS) algorithms can be run, once. Thus there is an initial stage of at most a few
steps during which gains are estimated based on pre-computed metrics and the
number of these metrics is adjusted.

All this is not as complicated as it appears. Turning attention to (1.9),
(1.11), and (1.14), the only two random quantities (or metrics) that are needed
to estimate the FAP and associated detection threshold are B and D. This is for
the g-method. For 2-d biasing the only additional quantity required is the norm
A of the primary vector, defined just after (1.5) and this adds almost nothing
to the computation. It turned out that generating K = 3000 random instances
of B and D was certainly an overkill. If one looks at Figure 1.7, the gain
provided by IS for estimating α = 10−6 is about 106. From usual asymptotic
normality arguments, [5], it follows that about 100 optimally biased trials are
sufficient to guarantee an absolute estimation accuracy not exceeding 10% with
95% confidence. For 2-d biasing, the simulation gain will be somewhat lower
but the essential advantages of the method above remain. That is, handling
a few hundred inversions (once) is not at all a tall order. This method can
produce such an avalanche of results that it is tempting to think of it (with a
slight stretch of imagination) as a ‘turbo-IS’. The above ideas certainly need
quantification but it is beyond the remit of this short report to delve deeper.

An interesting observation comes from Figure 1.6, which shows that the
biasing parameter is very close to unity and has a small spread despite the
range of FAPs considered. The implication is that the (one-sided) density of
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the metric D has small variance, presumably owing to the choice of L and
N . Smaller values of these constants would probably lead to larger spread of
biasing parameter. In the actual adaptations, a small value of the step-size
parameter was used to ensure gradual but safe convergence. This explains their
apparently slow nature as seen in the figures. While configuring results for a
suite of system parameters, only the first adaptation need be somewhat long;
subsequent adaptations can be much shorter as they pick up starting or initial
values from the previous one.

1.5 Conclusions

We have made a small inroad into the use of adaptive IS algorithms to char-
acterize a STAP detector. The AMF was used as example and results have
been very good. The chief reasons for this are that we were able to invoke the
g-method and inverse IS, find a suitable biasing strategy that could be easily
optimized adaptively, and find a way around the difficult task of inverting large
matrices several times (as described above). The hope is that applications to
other STAP configurations, such as normalized AMF and those that handle non-
homogenous clutter, will also meet with success. But this remains to be seen as
we are certainly not in position to predict what subtleties these other detection
algorithms can throw up. It is clear that IS is still in its infancy, especially
insofar as use for characterizing modern detection algorithms is concerned. The
simulation experiments conducted here have raised questions that need to be
answered subsequently.

Appendix

Adaptive algorithms for 2-d biasing The I-function is estimated as

Î(ν) =
1
K

∑K

1
1(A) W 2(X,XL;ν); ∼ f? (1.15)

and its minimization can be carried out using the 2-dimensional adaptive algo-
rithm

νm+1 = νm − δĴ−1
m ∇̂I(νm) (1.16)

Here, δ is a step-size parameter used to control convergence, and m is the index
of recursion. This is a stochastic Newton recursion. It achieves minimization of
Î by estimating a solution of

∇̂I(ν) ≡ (Îa Îθ)T = 0

where Ia , ∂I(ν)/∂a and Iθ , ∂I(ν)/∂θ. The estimate of the Jacobian J
(which is the Hessian matrix of I) is given by

Ĵ =

(
Îaa Îaθ

Îaθ Îθθ

)
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where Ixy ≡ ∂Ix/∂y. It is straightforward to show that the various I-functions
defined above can be obtained by the notational equations

Ix = E?{1(A)WWx}
Ixx = E?{1(A)WWxx}
Ixy = E?{1(A)WWxy}

with various derivatives of the weighting function calculated as

Wa ≡ ∂W

∂a

=
(
N − A

a

)W

a

Wθ ≡ ∂W

∂θ

=
(
LN − B

θ

)W

θ

Waa ≡ ∂2W

∂a2

=
[(

N − 2A

a

)
(N − 1) +

A2

a2

]W

a2

Wθθ ≡ ∂2W

∂θ2

=
[(

LN − 2B

θ

)
(LN − 1) +

B2

θ2

]W

θ2

Waθ ≡ ∂2W

∂a∂θ

=
(
LN − B

θ

)(
N − A

a

)W

aθ

and they can be estimated as in (1.15). The FAP estimator in (1.4) and the
adaptive biasing algorithm of (1.16) are implemented simultaneously.
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Chapter 2

Geometric-Mean and
Envelope-AMF STAP
Detectors

2.1 Introduction

In the previous chapter we considered the FAP and threshold estimation of AMF
detector by using IS and inverse IS respectively. Beside FAP, another perfor-
mance measure of a detector is the detection probability, PD. The higher the
detection probability for certain SNR, the better the detector. For the AMF de-
tector, the expression for detection probability in homogeneous Gaussian back-
ground is known (see [1]). If the expression for PD of a detector is unknown
then it is usually estimated by using standard MC simulation. Analytical ex-
pression for detection probability of AMF in the presence of interfering targets
is unknown. In this chapter, the performance of AMF for interfering targets
will be simulated to evaluate its performance.

As noted in the previous chapter, the AMF detector is similar to the cell-
averaging (CA) detector (see (1.3)). The CA detector take the sums of magni-
tude square of the training data. In the scalar case (only 1 antenna element),
it has been shown (see Chapter 6 in [5]) that CA detector is better than ge-
ometric mean (GM) detector in homogeneous background, but GM detector
performs well in the presence of interfering targets. It also has been shown in
[7] that mean-level CFAR processors including CA preceded by an envelope de-
tector have more robust performance in the presence of Gaussian clutter power
transitions and interfering targets as compared to the square law detector.

Following these facts, we propose the GM-STAP detector and envelope-AMF
detector (E-AMF), array processing versions of GM and envelope CA detectors
respectively. These STAP detectors should have small loss in homogeneous back-
ground case and will show more robustness compared to AMF in the presence
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of interfering targets.
In this chapter, we will give the expressions for GM-STAP and E-AMF de-

tector tests and also prove their CFAR property. In the performance evaluation
section, FAP and threshold estimation of these detectors by using IS will be
given, followed by estimation and comparison of the detection probability of the
proposed detectors with AMF in the homogeneous case and in the presence of
interfering targets.

2.2 The GM-STAP detector

It is well known that the scalar GM detector test can be formulated, in general,
as

U
H1

≷
H0

ζ

(∏L

l=1
Ul

)1/L

where U is the output of the test cell (primary data), Ul’s are the outputs of
the reference cells (training data), L is the number of reference cells, and ζ is
some multiplier. Following the same formulation, we will introduce GM-STAP
detector that can be formulated as

|s†R̂−1x|
H1

≷
H0

ηg

(∏L

l=1
|s†R̂−1x(l)|

)1/L

(2.1)

where s†R̂−1x and s†R̂−1x(l) are the outputs of the matched filter with RMB
beamformer weight R̂−1s applied to test cell and reference cells respectively.
The threshold multiplier for this detector is ηg. The definition of R̂, s, x, x(l)
and L are the same as in previous chapter.

The GM-STAP detector does geometric mean processing of the matched
filter ouputs of reference cells whereas the AMF detector computes an arithmetic
average.

2.2.1 Known covariance

In the ideal case when the covariance of the data is known, the estimate R̂ is
replaced by R in the test of (2.1). Normalizing the test by

√
s†R−1s yields

v
H1

≷
H0

ηg

( ∏L

l=1
vl

)1/L

where V and {Vl} are all independent. This is exactly the same situation as
for the GM-CFAR detector described in [5]. The FAPs of the GM-STAP and
GM-CFAR detectors are therefore the same in this case. Furthermore, when the
covariance is known, the GM-STAP detector has (almost trivially) the CFAR
property. In any case, such a situation is of no practical interest, for if the
covariance were known then one would just implement a coherent matched filter
with fixed threshold.
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Asymptotic threshold

It is of interest, however, to determine the threshold of the GM detector as the
number of training vectors L →∞. For convenience we consider the square-law
version of the test in (2.1). Denoting the random part of the (squared) threshold
by T

GM
, we have

T
GM

(L) =
( ∏L

l=1
|s†R̂−1x(l)|2

)1/L

so that
log T

GM
(L) =

1
L

∑L

l=1
log |s†R̂−1x(l)|2

Noting that R̂
−1 p−→ R−1 as L → ∞, then s† R̂

−1
X(l) D−→ s†R−1X(l) in the

absence of target. Therefore, by the law of large numbers

log T
GM

(L) −→ E{log |s†R−1X(l)|2} (in probability)

=
1

s†R−1s

∫ ∞

0

(log x) exp−x/s†R−1s dx

= − γ + log(s†R−1s)

because s†R−1X(l) ∼ CN 1(0, s†R−1s) and where γ is the Euler constant. It
follows (by Theorem 2.7 of [8]) that

T
GM

(L) −→ exp−γ (s†R−1s) (in probability)

= 0.561459 (s†R−1s)

, T
GM

(∞)

The FAP of the GM-STAP detector in this known covariance matrix case is
given by

α
GM

(L →∞) = P
(
|s†R−1X|2 ≥ η2

g T
GM

(∞)|H0

)

= exp−0.561459 η2
g

Note that the constant 0.561459 is the same asymptotic normalized weight νgm

obtained for the scalar GM-CFAR detector in Table 6.3 of [5]. Hence, the
threshold η2

g required to provide a FAP of 10−6 is 13.81551/0.561459 = 24.6064,
in the asymptotic case.

2.3 The envelope-AMF detector

The AMF test described by equation (1.3) in the previous chapter involves
the magnitude square of the matched filter ouputs of primary and training
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data. We may call this detector as Square Law - AMF (SL-AMF). By a slight
modification to this detector, taking the magnitude of the filter outputs instead
of the magnitude squared of the filter outputs, we have the test

|s†R̂−1x|
H1

≷
H0

ηe

L

∑L

l=1
|s†R̂−1x(l)| (2.2)

where the symbols used here have the same meaning as in the previous section
and ηe denotes the threshold multiplier for the envelope detector. We call this
the envelope-law AMF (E-AMF) detector.

2.4 CFAR property

In this section an invariance property is established that is of use in constructing
STAP detection algorithms with FAPs that do not depend on the data covari-
ance R. Although proof of the proposition given here follows the same line of
argument essentially contained in the exposition of the generalized likelihood
ratio STAP detector test (Kelly’s GLRT) given in [2], it is outlined here for
convenience of the reader1. Assume, as before, that the primary and training
data vectors have the same covariance. Consider the variables

G ≡ s†R̂−1x and G(l) ≡ s†R̂−1x(l) (2.3)

for l = 1, . . . , L, that are involved in the AMF detection test of (1.3). Using the
transformations u = R−1/2s, y = R−1/2x, and y(l) = R−1/2x(l), leads to

G = u†R̃−1y and G(l) = u†R̃−1y(l) (2.4)

where R̃ ≡ R−1/2R̂R−1/2. The whitened vectors Y and Y(l) are both dis-
tributed CNN (0, I). It turns out that R̃ has the complex Wishart distribution2

CW(L,N ; 1
LI). Further, a unitary transformation U can be found which rotates

the new signal vector u into an elementary vector e as

de = U†u

such that e = [1, 0, . . . , 0]† and where d2 = ‖U†u‖ = s†R−1s. The first column
of U is the new signal vector u. The remaining columns comprise an orthonor-
mal basis determined, for example, by a Gram-Schmidt procedure. Let z = U†y

1It would be helpful for the reader to refer to [2] (see also [1]). We have used several results
from this now classic paper and have attempted to maintain the same notation.

2When X ∼ CNN (0,R), the (Wishart) matrix W =
∑L

l=1 XX† = LR̂ has the complex
Wishart distribution CW(L, N ;R) specified by the density

fW (w) =

{
(detw)L−N

J(R)
exp(−tr(R−1w)), if R is positive definite

0, otherwise
(2.5)

where J(R) = πN(N−1)/2
∏N

n=1 Γ(L − n + 1)(det R)L. The covariance estimate R̂ is dis-

tributed as CW(L, N ; 1
L
R). If B is an N ×N nonsingular complex matrix, then V = B†WB

is distributed as CW(L, N ;B†RB). See [4] for more on Wishart distributions.
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and z(l) = U†y(l). Applying these to (2.4) yields the variables

G =
d

L
e†S−1z and G(l) =

d

L
e†S−1z(l) (2.6)

where S ≡ LU†R̃U. While Z and Z(l) are distributed as CNN (0, I) and are
independent, S has the distribution CW(L,N ; I). The vectors z and z(l) are
decomposed as

z =

[
z

A

z
B

]
and z(l) =

[
z

A
(l)

z
B

(l)

]

where the A components are scalar and B components (N − 1)-vector. Corre-
spondingly, S is decomposed as

S =
∑L

l=1
z(l)z(l)† =



S

AA
S

AB

S
BA

S
BB


 (2.7)

with

P ≡ S−1 =



P

AA
P

AB

P
BA

P
BB




The entries of P can be expressed as

P
AA

= (S
AA

− S
AB
S−1

BB
S

BA
)−1

P
BA

= −S−1

BB
S

BA
P

AA

P
AB

= P−1

BA

P
BB

= S−1

BB
+ P−1

AA
P

BA
P

AB

as shown in [2] (page 120). Using these definitions and relations in (2.6) gives

G =
d

L
e†S−1z

=
d

L
P

AA
(z

A
− S

AB
S−1

BB
z

B
)

=
d

L
P

AA
y (2.8)

and

G(l) =
d

L
e†S−1z(l)

=
d

L
P

AA

(
z

A
(l)− S

AB
S−1

BB
z

B
(l)

)
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=
d

L
P

AA
y(l) (2.9)

where

y ≡ z
A
− S

AB
S−1

BB
z

B

y(l) ≡ z
A

(l)− S
AB
S−1

BB
z

B
(l)

(2.10)

Conditioned on the vectors z
B

and z
B

(l), the random variables Y and Y (l) in
(2.10) are (in the absence of target) uncorrelated and Gaussian with zero means
and variances that can be calculated3 as

E
B
{|Y |2} = 1 + z†

B
S−1

BB
z

B

= 1 + z†
B

(∑L

l=1
z

B
(l)z

B
(l)†

)−1

z
B

(2.11)

using (2.7) in the second step, and

E
B
{|Y (l)|2} = 1− z

B
(l)†S−1

BB
z

B
(l), l = 1, . . . , L (2.12)

with E
B

denoting conditional expectation. Further, the conditional covariance
of the variables Y (l) is given by

E
B
{Y (k)Y (n)?} = − z

B
(n)†S−1

BB
z

B
(k), k 6= n (2.13)

Hence the set of conditionally jointly Gaussian zero mean random variables Y

and {Y (l)}L

1
have individual variances and covariances that are functions of the

random vectors z
B

and {z
B

(l)}L

1
. The latter are all jointly independent, each

being distributed as CNN−1(0, I). The probability of any event defined on the
random variables Y and {Y (l)}L

1
in (2.10) can thus be determined by perform-

ing an averaging operation over the distributions of z
B

and {z
B

(l)}L

1
and this

probability will be independent of the data covariance R. This statement is also
true for the random variables G and {G(l)}L

1
in (2.8) and (2.9) with the caveat

that any constant scaling of these variables should leave the event unchanged.
The preceding arguments therefore constitute proof of the following

Proposition 1. Any STAP detection algorithm that uses only the random vari-
ables G and {G(l)}L

1
defined in (2.3) for its description such that the algorithm

itself is unchanged by arbitrary but equal scaling of all these variables, has a
FAP which is independent of the target-free data covariance R.

Proof. As above.
3See pages 121 and 122 of [2].
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The proposition above helps to establish the CFAR property of GM-STAP
and E-AMF detectors. We can rewrite GM-STAP test in terms of random
variables G and G(l) by applying (2.3) to (2.1) as

|G|
H1

≷
H0

ηg

(∏L

l=1
|G(l)|

)1/L

(2.14)

By applying (2.3) to (2.2), we have an expression for E-AMF in terms of G
and G(l)

|G|
H1

≷
H0

ηe

L

∑L

l=1
|G(l)| (2.15)

Scaling both variables G and G(l) with arbitrary but equal scaling factor in
both above equations will not change the tests. So by using proposition 1, it is
clear that GM-STAP and E-AMF have the CFAR property.

2.5 Performance Evaluation

In this section we present estimates of the false alarm and detection probability
(PD) of the proposed detectors for several cases. The FAP of proposed detectors
cannot be derived analytically so that IS will be used to do the estimation.
The inverse IS will be executed to estimate the threshold of proposed detector.
The threshold then will be applied to evaluate the detection probability of the
detectors. As neither the exact formula nor an approximation for PD is known,
it will be estimated using MC simulations.

2.5.1 False Alarm Probabilities, Thresholds, and Gains

To estimate the FAP of both proposed detectors, we use g-method which is
previously described in chapter 1. The primary data x and training data vectors
x(l) are jointly independent and complex Gaussian, sharing a true covariance
matrix R. Because GM-STAP and E-AMF have CFAR property, we can set
R = I to simulate the performance of both detectors. In estimating the sample
covariance matrix for FAP estimation, the training data vectors are assumed
free of target signal.

FAP of GM-STAP detector

To evaluate the FAP of GM-STAP, for the sake of simplicity, we can write the
test in (2.1) as4

|s†R̂−1x|2
H1

≷
H0

η2
g

(∏L

l=1
|s†R̂−1x(l)|2

)1/L

(2.16)

4The LHS is, conditioned on the covariance estimate R̂, an exponential random variable.
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Using above test, the FAP can be expressed as

α = P

(
|s†R̂−1X|2 > η2

g

(∏L

l=1
|s†R̂−1X(l)|2

)1/L ∣∣∣∣H0

)

= E

{
P

(
|s†R̂−1X|2 > η2

g

(∏L

l=1
|s†R̂−1X(l)|2

)1/L ∣∣∣∣XL,H0

)}

, E{g(XL)} (2.17)

By following same derivations as in section 1.3.2, the only changed variable is
D (see (1.10)). We can redefine D for GM-STAP as

DG =

(∏L
l=1 |s†R̂−1x(l)|2

)1/L

s†(R̂−1)2s
(2.18)

The numerator in the equation above is the right-hand side of GM-STAP test
replacing the right-hand side of AMF test as in (1.10). Therefore, g(XL) be-
comes

g(xL) = e−η2
gDG

and the FAP expression in term of DG is

α = E{e−η2
gDG} (2.19)

The weighting function W (XL; θ), I -function and its derivatives are the
same as described in the section 1.3.2. The threshold is estimated adaptively
by using recursive formula described in (1.13).

Some simulations are run for case L = 128 and N = 64, by applying the
g-method. The adaptive IS and inverse IS method are run simultaneously to
estimate the optimal biasing parameters θ and thresholds. The scaling is used
as biasing technique. We simulate FAP from 10−1 to 10−7 with logarithmic
steps of one decade.

We can see the threshold estimation by using adaptive inverse IS method in
the Figure 2.1. For each FAP, the threshold reaches its convergence to optimal
value in 20 iterations. By using these thresholds we get FAP estimates pictured
in Figure 2.2. The convergence of biasing parameter θ of each FAP to its optimal
value can be seen in the Figure 2.3. From this figure we can observe that the
biasing parameter for each FAP estimate is very close to unity. This means that
the metric DG has small variance, probably caused by the choice of L and N .

Thresholds (GM)

Figure 2.4 shows the thresholds ηg for corresponding FAP. This can be approx-
imated by a linear interpolation between ηg and log10 α which can be expressed
mathematically by the relation

ηg = −1.3 log10α + 3.2
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Figure 2.1: Convergence of ηg. Inverse IS method for GM-STAP detector.
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The gradient of the linear graph is 1.3 which means if we decrease the FAP by
geometric factor 10−1 then the threshold will increase by arithmetic factor 1.3.
A more accurate relation between ηg and log10α can be represented by the cubic
interpolation

ηg = −0.011 (log10 α)3 − 0.2 (log10 α)2 − 2.2 log10 α + 2 (2.20)

To be noted is that this interpolation has been obtained for the FAP range
10−1 − 10−7.

Simulation gains

The simulation gains for different FAPs can be seen in Figure 2.5. The obtained
gains are quite high but lower compared to AMF (L = 128, N = 64) and much
lower compared to AMF for L = 704 and N = 352. We can expect that for
higher L and N , the simulation gains of GM-STAP will be higher. However,
using IS in simulating the FAP of GM-STAP indeed reduces the computational
load. As an example, for FAP 10−6, the trials needed are only about 2300 while
MC needs 108.
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Figure 2.5: Simulation gains Γ vs FAP for three detectors.

FAP of E-AMF

The false alarm probability of E-AMF is also estimated by using IS and g-
method. To derive the g-method estimator, for the sake of simplicity, we can
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express (2.2) as

|s†R̂−1x|2
H1

≷
H0

η2
e

(
1
L

∑L

l=1
|s†R̂−1x(l)|

)2

|s†R̂−1x|2
H1

≷
H0

η2
eZ (2.21)

where

Z ≡
(

1
L

∑L

l=1
|s†R̂−1x(l)|

)2

The FAP for E-AMF then can be written as

α = P (|s†R̂−1X|2 > η2
e Z|H0)

= E{P (|s†R̂−1X|2 > η2
e Z|XL,H0)}

, E{g(XL)} (2.22)

By carrying out the same steps as in section 1.3.2, we get the expression for
g(XL) as

g(XL) = e−η2
e DE

where
DE =

Z

s†(R̂−1)2s

The expression of FAP becomes

α = E{e−η2
e DE}

= E?{e−η2
e DE W (XL; θ)}

and its estimate is

α̂g =
1
K

∑K

1
e−η2

e DE W (XL; θ); ∼ f?

The variables needed for adaptive IS like scaling parameter θ,weighting func-
tion W (XL; θ), I -function and its derivatives are the same as described in sec-
tion 1.3.2. To find the optimal biasing parameter θ we used Newton recursive
algorithm described in (1.12). The thresholds for each FAP are adaptively esti-
mated by using inverse IS. We may reformulate the adaptive inverse IS algorithm
described in (1.13) and (1.14) for the E-AMF case as

ηm+1 = ηm + δη
αo − α̂(ηm)

α̂′(ηm)
, m = 1, 2, . . . (2.23)

where δη is a step-size parameter and the derivative estimator in the denomi-
nator is given by

α̂′(ηm) = −2 ηm DE

K

∑K

1
e−ηmDE W (XL; θ); ∼ f?
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= −2 ηm DE α̂(ηm) (2.24)

with the prime indicating derivative with respect to ηm. The symbols ηm and
m correspond to the ηe and iteration number respectively.

We test adaptive IS and inverse IS algorithms simultaneously for case L =
128 and N = 64 to estimate FAPs from 10−1 to 10−7. The estimated FAPs
are described in Figure 2.7 by using thresholds found from optimization pro-
cess pictured in Figure 2.6. We can see that the adaptive inverse IS algorithm
converges in 20 iterations which is quite fast. The biasing parameter (θ) opti-
mization process also converges in 20 iterations as pictured in Figure 2.8. As in
case of GM-STAP detector, the biasing parameters for E-AMF are also close to
unity and has small spread.

Thresholds (E-AMF)

The relation between the thresholds and -log10 α is considerably more linear in
this case with gradient 1, as described in Figure 2.9 and expressed as

ηe = − log10 α + 2.7

A more accurate relation is expressed in term of the cubic equation

ηe = −0.01 (log10 α)3 − 0.17 (log10 α)2 − 1.9 (log10 α) + 1.7 (2.25)

By using this expression we may have rough estimates of the thresholds for
lower FAPs.

Simulation gains

Figure 2.10 shows the simulation gains by implementing IS simulation with g-
method. We can observe that simulation gains of E-AMF are slightly higher
than for GM at high FAPs and almost the same at low FAPs. Compared to
the AMF, the gains of E-AMF are almost the same at high FAPs but lower at
low FAPs. As in case of AMF, larger values of L and N may result higher in
simulation gains.

2.5.2 PD in homogeneous case

In this subsection we present the detection probability of GM-STAP and E-
AMF detectors in homogeneous background and compare them with the AMF.
We set FAP to 10−6, the value of L and N are the same as in FAP simulations.
All the simulations concerning detection probability are done by using standard
Monte Carlo (MC) technique, because the probabilities are not very low. The
number of samples are kept larger than 100/PD. The detection probability in
case of non-fluctuating target can be seen in the Figure 2.11. It shows that
the detection probability of AMF is better than GM-STAP and E-AMF in the
homogeneous case. For PD equals to 0.5, E-AMF has about 0.18 dB detection
loss compare to AMF, while GM-STAP suffers 0.3 dB loss.
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Figure 2.10: Simulation gains Γ vs FAP for three detectors.

We also do some simulations to estimate detection probability when the
Swerling I fluctuating target model is included. To simulate the performance
because of this fluctuating target model, a combination of g-method and MC is
used. This is done to obtain smoother results. The result is presented in Figure
2.12. We can observe that for PD equals to 0.5, GM-STAP has loss about 0.3
dB and E-AMF has loss about 0.15 dB compared to AMF.

From these simulation results we can conclude that in homogeneous case,
regardless the fluctuation of the target, both proposed detectors have small
detection loss compare to AMF.

2.5.3 PD in the presence of nonhomogenities

In this subsection we will show the simulation results that compare the perfor-
mances of GM-STAP and E-AMF with AMF in the presence nonhomogenities.
The nonhomegenity we consider here is the presence of interfering targets. The
power of the interfering targets are taken to be the same as the power of the ac-
tual target5. Figure 2.13 shows the comparison of the performance of GM-STAP
and AMF in the presence of 2 interferers and the target signal is constant,i.e.
non-fluctuating. At PD = 0.5, AMF has detection loss about 0.98 dB w.r.t

5It is assumed that interferers have the same angle-Doppler properties as those of the
primary target.
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Figure 2.13: PD of AMF, GM-STAP, and E-AMF.

GM-STAP and about 0.73 dB compared to E-AMF. This detection loss will
increase for higher PD. For example at PD = 0.9, AMF suffers loss about 1.9
dB w.r.t GM and 1.6 dB w.r.t E-AMF. From the graph, we can also see that the
detection loss of E-AMF compared to GM is quite constant i.e about 0.25-0.3
dB.

For case 3 interferers, the losses of AMF are even higher. At PD = 0.5, AMF
has loss about 2.5 dB w.r.t GM and 1.9 dB w.r.t to E-AMF. For an extreme
case, i.e. at PD = 0.9, AMF has loss about 9 dB and 8 dB compared to GM
and E-AMF respectively. The E-AMF itself has loss 0.58 dB (at PD = 0.5) and
0.85 (at PD = 0.9) dB compared to GM.

These facts show the robustness of GM and E-AMF detectors compared to
AMF. In the case of Swerling I fluctuating target model, both detectors still
show their robustness compared to AMF as can be seen in the Figure 2.15. We
can conclude that in the presence of interfering targets, GM-STAP performs the
best while AMF is the worst. The E-AMF detector also shows its robutness in
these simulations and has small detection loss compared to GM detector.

2.6 Conclusion

In this chapter we introduced the GM-STAP and E-AMF detectors. We show
that IS methods work well in estimating the FAP and determining the thresholds
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Table 2.1: Comparison of three STAP detectors.

Q AMF-S AMF-E GM-STAP
Is it CFAR? Yes Yes Yes

homogeneous Pd - very small loss very small loss
Robust to interferers? No somewhat most

of GM-STAP and E-AMF detectors. However, IS simulation gains for GM-
STAP and E-AMF are not very high, and they can be increased by developing
better biasing methods which is subject for future research.

Simulation results show that the GM-STAP and E-AMF detectors have quite
small loss in detection probability compared to AMF, but they have very good
performance and show robustness in the presence of interfering targets. The
AMF fails to maintain its robustness in this situation. These findings are sum-
marized in Table 2.1.
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Chapter 3

Further results on IS for
STAP detection

This third report (or chapter) begins with some additional results on the E-AMF
and GM-STAP detectors for the case of L = 704 and N = 352. These complete
our investigations into the two detectors and complement parallel results that
were obtained previously for the square-law AMF detector with the above L
and N values. Comparisons with the latter detector have also been made.

The results are contained in Figures 3.1 - 3.5 for the E-AMF detector. Inverse
IS results are in Fig. 3.1 and 3.2. Estimated optimum biasing parameters and
the I-functions are in Fig. 3.3 and 3.4 respectively. IS gains estimated during
simulation are shown in Fig. 3.5. Corresponding results for the GM-STAP
detector are in Figures 3.6 - 3.8. Thresholds for the 2 detectors (including
AMF) as functions of FAPs are in Fig 3.9. The cubic interpolations

ηE = 0.01x3 − 0.18647x2 + 1.8822x + 1.725467

and
ηG = 0.011813x3 − 0.21985x2 + 2.22917x + 2.040834

where x = − log10 α can be used to determine thresholds for the E-AMF and
GM detectors in the FAP range 10−1 - 10−7 respectively. Estimated IS gains as
functions of FAPs are shown in Fig 3.10. It is noted that simulation gains for
the 3 detectors are of the same order.

3.1 General remarks on IS

Point of application of biasing

Some comments of a general nature regarding application of IS to signal process-
ing algorithms are made here. They give some insight into the thinking behind
our efforts to simulate the above mentioned algorithms. The simulation proce-
dures described thus far in the previous chapters are applicable to any detector.

36



0 20 40 60 80 100
3

4

5

6

7

8

9

10

α
0
=10−1

10−2

10−3

10−4

10−5

10−6

10−7

Envelope Detector with N = 352, L = 704, K=5000

Recursion Index n

T
hr

es
ho

ld
 e

st
im

at
es

  η
E

Figure 3.1: Inverse IS thresholds.
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Figure 3.2: FAP estimates.
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Figure 3.4: I-function estimates.
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Figure 3.5: IS gain estimates.
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Figure 3.7: FAP estimates.
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The IS biasing is performed on the input random variables and we refer to this
as input biasing. Accuracy of the IS estimates and resulting simulation gains
will of course depend on the particular detection algorithm under study. It is
generally true (and intuitive) that better estimator performance can be obtained
if IS biasing can be carried out closer to the point in the processing chain of the
detector where the actual (rare event) decisionmaking is done. This of course
necessitates knowledge of density functions of the processes at the point where
biasing is to be implemented. Often, input stochastic variables may have un-
dergone transformations whose results are difficult to characterize statistically
in analytical form, and we have to rely on the general method above. However,
when such transformations can be characterized, then IS should be carried out
using the modified processes. Therefore, it is desirable to perform biasing and
IS as close to the final decisionmaking point as permitted by availability of
knowledge of probability density functions.

Another approach to biasing that is sometimes possible is to perform a series
of (linear and/or nonlinear) transformations of the input processes as if one were
carrying out a mathematical analysis of the algorithm. The transformations are
carried out until the point beyond which it may not be possible to determine
the density functions of the transformed processes without considerable mathe-
matical effort. Biasing is then performed at this stage, the hope being that the
g-method becomes applicable. This procedure may produce higher simulation
gains than simple input biasing which, of course, is the easiest to implement. It
is illustrated in some of the following examples.

3.2 The NMF STAP detector

The use of IS to characterize the normalized matched filter (NMF) detector and
some of its variants is discussed in the rest of this chapter. Expressions for the
FAP and detection probability of the NMF detector operating in homogeneous
Gaussian clutter are known in closed form. However, much can be learnt about
biasing for this class of detectors from the exercise of applying IS to estimate its
FAP. The variants are the normalized adaptive matched filter (NAMF) and the
low-rank NAMF detectors. All these detection algorithms have been treated in
detail in [3], [15], and other papers.

The NMF detection test is given by

ΛNMF ≡ |s†R−1x|2
(s†R−1s)(x†R−1x)

H1

≷
H0

η (3.1)

following the usual notations. Its FAP in Gaussian interference is known, [15],
and particularly easy to derive. It differs from the matched filter (for known
interference covariance matrix R) in the normalization term which is the second
one in the denominator. The FAP of the detector is given by

α
NMF

= (1− η)N−1
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and it has the CFAR property of being invariant to the interference covariance
matrix R. Furthermore, as is evident from (3.1), the FAP is also invariant to
any scaling of the primary and secondary data.

3.2.1 The FAP of the NMF detector (using IS)

We begin with a simple (re-) derivation of the FAP of the detector. It helps to
illustrate an elegant aspect of IS, by which it is sometimes possible to derive a
perfect estimate of a rare-event probability. Furthermore, although this problem
can be analyzed completely, it is an application of the procedure described in
the last paragraph of the introduction.

It is assumed that x ∼ CNN (0,R). With a whitened data vector defined as
x1 ≡ R−1/2x and a transformed steering vector s1 ≡ R−1/2s, the test statistic
of (3.1) takes the form

ΛNMF =
|s†1x1|2

(s†1s1)(x
†
1x1)

=
x†1s1

‖s1‖
s†1x1

‖s1‖
1

x†1x1

=
x†1u1u

†
1x1

x†1x1

=
y?
1y1

x†1x1

=
|y1|2
‖x1‖2 (3.2)

where u1 = s1/‖s1‖ is an N -dimensional unit vector and y1 = u†1x1 a scalar ran-
dom variable. Using for example a Gram-Schmidt procedure, an N -dimensional
basis can be formed by determining N − 1 other unit vectors in the orthogo-
nal subspace of u1. Denoting the former by ui, i = 2, . . . , N , we define the
corresponding random variables yi = u†ix1. Then

|y1|2 +
∑N

i=2
|yi|2 =

N∑

i=1

|yi|2

= x†1

N∑

i=1

uiu
†
i x1

= x†1I x1

= ‖x1‖2 (3.3)
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with the {yi}N
1 being i.i.d. and distributed as CN 1(0, 1). The test therefore

becomes

ΛNMF =
|y1|2

|y1|2 +
∑N

i=2 |yi|2
H1

≷
H0

η (3.4)

which can be put in the form

u∑N
i=2 vi

H1

≷
H0

ηo ≡ η

1− η
(3.5)

where
u ≡ |y1|2 and vi ≡ |yi|2, i = 2, . . . , N

The FAP of the NMF detector is then

α
NMF

= P
(
U > ηo

∑N

i=2
Vi

)

= E
{

P
(
U > ηo

∑N

i=2
Vi

∣∣∣V2, . . . , VN

)}
(3.6)

The first line above has exactly the same form as the FAP of a CA-CFAR
detector as U and each Vi are i.i.d. (unit) exponential random variables; the
formula for this probability is well known. To re-derive the latter, a g-method
estimator can be written as

α̂
NMF

=
1
K

K∑
1

e−ηo
∑N

2 Vi ·W (V2, . . . , VN ) (3.7)

Scaling each Vi with a and using the resulting weighting function

W (v2, . . . , vN ) = aN−1 e−(1−1/a)
∑N

2 vi (3.8)

yields the estimator

α̂
NMF

=
1
K

K∑
1

aN−1 e−(ηo+1−1/a)
∑N

2 Vi (3.9)

If the scaling factor is chosen as a = 1/(1 + ηo) in this estimator, then

α̂
NMF

=
1
K

K∑
1

(
1

1 + ηo

)N−1

= (1− η)N−1, a constant

= α
NMF

(3.10)

the last step following from the fact that the variance of this unbiased estimator
is zero.
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3.2.2 FAP estimation by IS: rotation of primary vector

If we want to estimate α
NMF

using input biasing, then it is clear from the
test statistic in (3.1) that a simple scaling of the elements of the primary data
vector x will be useless. A form of biasing can however be developed using
the (well known) fact that the test statistic is actually a cosine-squared one,
the concerned angle being that between the transformed steering (or unit) and
whitened primary data vectors s1 (or u1) and x1 respectively, as evident from
(3.2). The frequency of false alarm events in a simulation can therefore be
increased by biasing x1 so as to decrease the angle toward zero or increase it
toward π. This can be accomplished by a rotation of x1 which, since it is being
assumed for this detector that the actual data covariance matrix R is completely
known, is equivalent to input biasing (of the primary data vector x).

Consider biasing the whitened primary data vector x1 by rotation with
an N × N matrix A. The biased vector is Ax1 and will be distributed as
CNN (0,R?) with covariance matrix R? given by R? = AA†, since x1 ∼
CNN (0, I). The weighting function is then given by

W (x1;A) =
f(x1)
f?(x1)

= |R?| exp
(− x†1(I−R−1

? )x1

)
(3.11)

where | · | denotes matrix determinant. The FAP estimator for the test in (3.2)
then takes the form

α̂
NMF

=
1
K

K∑
1

1
(|u†1x1|2 ≥ η ‖x1‖2

)
W (x1;A); ∼ f? (3.12)

The problem now centers around determining an effective rotation or biasing
matrix A. There is clearly an unbounded number of rotation matrices to choose
from. To narrow the choice, it is most convenient to make the matrix dependent
on a single (biasing) parameter, say a, and search for the optimum value of the
latter by minimizing the associated I-function which is given by

I(a) = E?

{
1
(A)

W 2(x1;A)
}

= E
{
1
(A)

W (x1;A)
}

(3.13)

where A ≡ 1
(|u†1x1|2 ≥ η ‖x1‖2

)
is the false alarm event. In actual simulation

we will determine a minimizer for an estimate of I(a), that is

aopt = arg min
a

(
Î(a) =

1
K

K∑
1

1
(A)

W 2(x1;A); ∼ f?

)
(3.14)

The form or structure of A has to be now decided. We assume that A = I+aT
for 0 ≤ a < 1 where T is some N × N matrix. The biasing matrix A is to be
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constructed so as to introduce correlation amongst the components of x1 in a
controlled manner. To understand how this can be achieved, consider first the
simple case where the unit vector u1 is given by

u1 =
1√
N




1
.
.
1




This can happen if R = I and the original steering vector s has all equal
elements. Suppose (based on heuristic reasons) the matrix T is set to

T =




0 1 . . 1
1 0 . . 1
. .
. .
1 . . . 0




Then

A =




1 a . . a
a 1 . . a
. .
. .
a . . . 1




(3.15)

It is noted that the above matrix does not provide a norm-preserving rotation.
We avoid simulating with a = 1 since this obviously leads to a singular matrix.
When a = 1, the test statistic becomes unity and all the elements of the biased
vector Ax1 are equal to

∑N
i=1 x1i where x1i’s denote the elements of the unbiased

x1. That is, the fully biased vector would be aligned in the direction of u1 or
opposite to it, in CN . When a = 0, no biasing or rotation takes place. Estimating
an optimum value of a that maximizes the simulation gain for given threshold
η is an easy problem.

For the case R 6= I we consider a unit vector u1 having elements denoted by
ti, i = 1, . . . , N . By analogy we set

T =




t1 − 1 t1 . . t1
t2 t2 − 1 . . t2
. .
. .

tN . . . tN − 1




(3.16)

Again, when a = 1 the biased vector is just
( ∑N

i=1 x1i

)
u1 and is collinear with

u1.
An interesting phenomenon takes place with this biasing scheme. The weight-

ing function in (3.11) depends on the matrix A which in turn depends (apart
from on the biasing parameter a) on the elements of the unit vector u1 through
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Figure 3.11: Optimum biasing parameter for the T matrix in rotation biasing,
R = I.

the T matrix. The IS estimator in (3.12) estimates α
NMF

= E{1(A)} which,
from (3.10), is known to be independent of the particular unit vector u1 be-
ing used. Hence, if the estimator α̂

NMF
is a reasonably good one, then it will

be largely unaffected by the choice of the biasing matrix A (and hence of T).
However, the gain of the proposed IS scheme depends on the I-function given in
(3.13) and this depends on the weighting function and therefore on the matrix
T. Thus the maximum gain for the optimized IS scheme will be affected by
the choice of unit vector u1. Since u1 = R−1/2s/‖R−1/2s‖ it follows that the
IS performance of this rotation biasing scheme depends on the data covariance
matrix R in force; this is despite the fact that the detector FAP is independent
of R. Decoupling the biasing matrix A from u1 is of course not possible. Thus
there may exist some R which gives a best IS simulation gain for given detector
constants η and N . Furthermore, it may be possible to achieve some invariance
of IS gain to covariance matrix R by using a matrix normalization for the T
or A matrices. These issues are not investigated here and in the interests of
expediency we present results obtained by simulating the R = I case. We will
visit rotation biasing later in this investigation.

The simulation results are in Figures 3.11 and 3.12 which show the estimated
optimum biasing parameter and IS gains as functions of FAP respectively. As is
evident from Fig 3.12 the simulation gain is not very high, being approximately
4× 104 at a FAP of 10−6.
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3.3 The NAMF STAP detector

This section deals with the fast estimation of FAP for the NAMF detector.
Developing an IS procedure for this is made easier by first setting up an alternate
IS mechanization for FAP estimation of the AMF detector studied in Chapter 1.

3.3.1 FAP estimation for the AMF revisited

The alternate procedure for the AMF detector uses the g-method with two-
dimensional biasing.

Reproducing (2.8) and (2.9) on page 20 we have

G =
d

L
P

AA
y (3.17)

and

G(l) =
d

L
P

AA
y(l) (3.18)

where

y ≡ z
A
− S

AB
S−1

BB
z

B

y(l) ≡ z
A

(l)− S
AB
S−1

BB
z

B
(l)

(3.19)
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The AMF test of (1.3) on page 3 can therefore be written as

|y|2
H1

≷
H0

η

L

L∑

l=1

|y(l)|2 (3.20)

We know from Section 2.4 that, conditioned on z
B

and {z
B

(l)}L

1
(or, for short,

the B-vectors), Y and {Y (l)}L

1
are zero mean uncorrelated Gaussian random

variables with variances and covariance as in (2.11), (2.12), and (2.13). From
[2] it is known that

L∑

l=1

|y(l)|2 d≡
L−N+1∑

l=1

|w(l)|2 (3.21)

where the w(l) are i.i.d. each with distribution CN 1(0, 1). Moreover, Y/M1/2
B

is, conditioned on the B-vectors, also distributed as CN 1(0, 1) where

M
B
≡ 1 + Σ

B

and

Σ
B

= z†
B

(∑L

l=1
z

B
(l)z

B
(l)†

)−1

z
B

(3.22)

The test in (3.20) then takes the form

u
H1

≷
H0

η′
L−N+1∑

l=1

u(l) (3.23)

where U ≡ |Y |2/M
B

and {U(l) ≡ |w(l)|2}L−N + 1

1
are all unit exponential and

i.i.d., and η′ ≡ η/(LM
B

). Once again, this is in the form of the usual CA-
CFAR test when it is conditioned on the B-vectors. Hence the FAP of the AMF
detector can be written as

α
AMF

= P
(
U ≥ η′

∑L−N+1

l=1
U(l)

)

= E
{

P
(
U ≥ η′

∑L−N+1

l=1
U(l)

∣∣∣ B-vectors
)}

, E{g(Σ
B

)} (3.24)

where
g(Σ

B
) =

1
[1 + η/(LM

B
)]L−N+1

(3.25)

We can therefore estimate the FAP using the g-method with an IS simulation
that biases the B-vectors. This estimator is

α̂
AMF

=
1
K

K∑
1

g(Σ
B

)W (z
B

, z
BL

); ∼ f? (3.26)
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Figure 3.13: Optimum scaling for primary B-vectors.

where z
BL

≡ (z
B

(1), . . . z
B

(L))′.
Biasing of the B-vectors contained in Σ

B
must produce an increase in the

value of the g-function in (3.25). This means that Σ
B

must be made to increase,
which can easily be accomplished by scaling up the primary B-vector z

B
and

scaling down the secondary B-vectors z
B

(l). A 2-d biasing scheme results, which
needs to be optimized adaptively. As in Section 1.3.1 on page 3, the primary
and secondary scaling parameters are chosen as a1/2 and θ1/2 respectively, where
a ≥ 1 and 0 < θ ≤ 1. The weighting function is easily shown to be

W (z
B

, z
BL

) = aN−1θL(N−1) exp
(− z†

B
z

B
(1− 1/a)

)

· exp
(
− (1− 1/θ)

∑L

l=1
z

B
(l)†z

B
(l)

)
(3.27)

The rest of the optimization procedure is as discussed in Section 1.3.
The results obtained from this 2-d IS simulation have been compared with

the g-method used with input biasing, the technique which was developed in
Chapter 1. Figures 3.13 - 3.16 contain these and are self-explanatory. From
Fig 3.16 it is clear that applying the g-method with biasing of B-vectors is a
more powerful IS scheme than the corresponding method used with input biasing
of all secondary vectors, which was the subject of Chapter 1. This illustrates
the points made in Section 3.1.
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3.3.2 IS for the NAMF detector

The NAMF detection statistic is given by

|s†R̂−1x|2
(s†R̂−1s)

· 1

(x†R̂−1x)

H1

≷
H0

η (3.28)

Using (3.23), this can be written as

u
L−N+1∑

l=1

u(l)

H1

≷
H0

η

LM
B

(x†R̂−1x) (3.29)

With the transformations in Section 2.4 on page 19, the normalization term in
the RHS of the above equation becomes

x†R̂−1x = L z†S−1z (3.30)

with S defined in (2.7) on page 20. From the discussion on pages 120 and
121 of [2], it turns out that the quantity z†S−1z, denoted therein as Σ, can be
expressed as

z†S−1z =
|y|2

L∑
l=1

|y(l)|2
+ Σ

B
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d≡ |y|2
L−N+1∑

l=1

|w(l)|2
+ Σ

B

= M
B
· u

L−N+1∑
l=1

u(l)
+ Σ

B
(3.31)

using the definitions of Section 3.3.1. Combining (3.29), (3.30), and (3.31) yields
the test in the form

u
H1

≷
H0

ηo

Σ
B

1 + Σ
B

L−N+1∑

l=1

u(l) (3.32)

where ηo = η/(1 − η). Conditioned on the B-vectors this is again a CA-CFAR
test resulting in the FAP

α
NAMF

= E{g
N

(Σ
B

)} (3.33)

where
g

N
(Σ

B
) =

1
[1 + ηoΣB

/(1 + Σ
B

)]L−N+1
(3.34)

The FAP estimator is then

α̂
NAMF

=
1
K

K∑
1

g
N

(Σ
B

)W (z
B

, z
BL

); ∼ f? (3.35)

with the weighting function W being the same as in (3.27) excepting that the
roles of the two biasing parameters are exchanged, that is, 0 < a ≤ 1 and θ ≥ 1.
Simulation results are shown in Figures 3.17 - 3.22. IS results for threshold
estimation have been compared with the analytical expression available in [15].
A quick way of determining the threshold for the NAMF detector is using the
cubic interpolation polynomial :

η
NAMF

= 7.96× 10−5x3 − 0.003116 x2 + 0.0723 x + 7.77× 10−5 (3.36)

where x = − log10 α.

3.4 Conclusion

In this chapter we have introduced and developed IS techniques suitable for
analysis of the NMF class of STAP detectors. In particular, the method based
on rotation of the primary data vector could be an effective solution for the
difficult problem of characterizing the low-rank version of NAMF detectors.
This is a matter for further investigation. Two dimensional biasing methods
have been used to produce new IS results for the AMF and NAMF algorithms.
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Figure 3.17: Thresholds through inverse IS.
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Figure 3.18: Optimum scaling for primary B-vectors.
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Chapter 4

Geometric mean and
envelope-law NAMF STAP
detectors

4.1 Introduction

Following the developments of Chapter 2, we propose two NAMF detector vari-
ants. These are the envelope and geometric-mean based versions. They are
referred to hereafter as the E-NAMF detector and the GM-NAMF detector.
In this chapter, their CFAR property is established and threshold settings for
the detectors for specified false alarm probability (FAP) is accomplished using
fast simulation based on importance sampling. The two variants show robust-
ness in detection probability in the presence of interfering targets contaminating
the training data while having zero loss in homogenous Gaussian interference
compared to the usual square-law NAMF detector. This is shown for both fluc-
tuating and non-fluctuating target models. Performance comparisons with the
AMF variants are provided.

4.2 E-NAMF detector

This detector is constructed in the same way by which we defined the E-AMF
detector. Consider the test

|s†R̂−1x|√
x†R̂−1x

H1

≷
H0

ηe

L

L∑

l=1

|s†R̂−1x(l)| (4.1)

which we refer to as the E-NAMF detector. As before, we expect this detector
form to display some robustness against interfering targets in the secondary
data compared to the usual NAMF detector.
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4.2.1 Asymptotics

The asymptotic FAP behavior of this detector as L →∞ (or known covariance
matrix R) is obtained from

α
L →∞ = P

( |s†R−1X|√
X†R−1X

≥ ηeE{|s†R−1X(l)|}
)

= P

( |s†R−1X|2
X†R−1X

≥ η2
eπ

4
s†R−1s

)

=
(
1− π

4
η2

e

)N−1

(4.2)

the first line above following from convergence arguments and the law of large
numbers applied to the independent and identically distributed sequence {s†R−1X(l)},
the second by noting that s†R−1X(l) is distributed as CN 1(0, s†R−1s), and the
third from the fact that the second line represents the FAP (1−ν)N−1 of a nor-
malized matched filter (NMF) STAP detector (the statistic of which is shown
in (3.1)) with threshold ν ([15]) where ν = η2

eπ/4. The asymptotic threshold
can be calculated from the above expression.

4.2.2 Alternate form and CFAR property

Using (3.18) and (3.19) of section 3.3.1, the E-NAMF test of (4.1) can be rewrit-
ten as

|y|√
x†R̂−1x

H1

≷
H0

ηe

L

L∑

l=1

|y(l)| (4.3)

Then, combining (3.30) and the first line of (3.31) and substituting for x†R̂−1x
in the above yields the test

|y|√
LΣ

B
+ L|y|2

/ ∑L
l=1 |y(l)|2

H1

≷
H0

ηe

L

L∑

l=1

|y(l)| (4.4)

So if we replace y and y(l) by G and G(l) as defined in [10] respectively in the
above, then the test remains unchanged. This implies, from the proposition of
[10] and the arguments leading up to it, that the test is CFAR.

4.3 GM-NAMF detector

The geometric-mean version, referred to as the GM-NAMF detector, is defined
as

|s†R̂−1x|√
x†R̂−1x

H1

≷
H0

ηg

( ∏L

l=1
|s†R̂−1x(l)|

)1/L

(4.5)

where ηg is the threshold. The square-law version is identical, being just a
square of the above test expression.
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4.3.1 Asymptotics

The asymptotic FAP for this detector is given by

α
L →∞ = P

(
log

|s†R−1X|2
X†R−1X

≥ 2 log ηg

+ E{log |s†R−1X(l)|2}
)

= P

(
log

|s†R−1X|2
X†R−1X

≥ 2 log ηg

− γ + log(s†R−1s)
)

= P

( |s†R−1X|2
X†R−1X

≥ η2
g e−γ s†R−1s

)

=
(
1− η2

g e−γ
)N−1 (4.6)

where γ is the Euler-Mascheroni constant.

4.3.2 Alternate form and CFAR property

Just as for the E-NAMF detector, the GM-NAMF test of (4.5) can be rewritten
as

|y|√
x†R̂−1x

H1

≷
H0

ηg

( L∏

l=1

|y(l)|
)1/L

(4.7)

and then as

|y|√
LΣ

B
+ L|y|2

/ ∑L
l=1 |y(l)|2

H1

≷
H0

ηg

( L∏

l=1

|y(l)|
)1/L

(4.8)

For the same reasons as for the E-NAMF detector, the GM-NAMF test is also
CFAR.

4.4 FAP estimation

With some straightforward manipulations, the E-NAMF test in (4.4) can be
rewritten as

|y|2
H1

≷
H0

η2
eΣ

B

LCe

( ∑L

l=1
|y(l)|

)2

(4.9)

where

Ce ≡ 1− η2
e

L

( ∑L
l=1 |y(l)|)2

∑L
l=1 |y(l)|2

(4.10)
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and the GM-NAMF in (4.5) as

|y|2
H1

≷
H0

η2
gLΣ

B

Cg

( L∏

l=1

|y(l)|2
)1/L

(4.11)

where

Cg ≡ 1− Lη2
g

( ∏L
l=1 |y(l)|2)1/L

∑L
l=1 |y(l)|2

(4.12)

In writing (4.9) and (4.11) we have assumed that Ce > 0 and Cg > 0. This
will be guaranteed if ηe ≤ 1 and ηg ≤ 1, respectively, and can be seen by
an application of Hölder’s inequality to the sums in (4.10) and using the fact
that geometric means are smaller than arithmetic means in (4.12). As shown by
simulation results, a wide range of FAPs is achieved for values of both thresholds
less than unity and therefore we assume this restriction to hold. For brevity we
denote the RHSs of both (4.9) and (4.11) by Σ

B
D, where D is a function of(

y(1) · · · y(L)
)

, yT
L and corresponding constants that depend on the

detector in question. With this (generic) notation, the FAP can be written as

α = P (|Y |2 ≥ Σ
B

D)

= EB{P (|Y |2 ≥ Σ
B

D
∣∣ B-vec)}

= EB{E{P (|Y |2 ≥ Σ
B

D
∣∣ B-vec,YL)}}

= EB{E{e−Σ
B

D/(1+Σ
B

) ∣∣ B-vec)}}

= EB

{
E

{
g(Σ

B
,YL)

∣∣∣ B-vec
}}

(4.13)

where
g(Σ

B
,YL) ≡ e

−Σ
B

D/(1+Σ
B

) (4.14)

and EB denotes expectation over the distribution of the B vectors and E the
expectation over the conditional distribution of YL. The fourth line above
follows because conditioned on the B vectors, Y and YL are independent and
|Y |2/(1 + Σ

B
) is unit exponential.

From (2.7) on page 20, y and y(l) are

y ≡ z
A
−

∑L

l=1
z

A
(l)z

B
(l)† S−1

BB
z

B

y(l) ≡ z
A

(l)−
∑L

i=1
z

A
(i)z

B
(i)† S−1

BB
z

B
(l)

(4.15)

Then the FAP in (4.13) can be further written as

α = EB

{
E

{
g(Σ

B
,YL)

∣∣∣B-vec
}}
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=
∫ ∫

g(Σ
B

,YL) f(YL

∣∣ B-vec) f(B-vec) dYL dB-vec

=
∫ ∫

g(Σ
B

,YL) f(YL, B-vec) dYL dB-vec

= E{g(Σ
B

,YL)}
= E{g(Σ

B
, Y (1), . . . , Y (L))}

= E{g(Σ
B

, ZA(1), . . . , ZA(L))}

, E{g(Σ
B

,ZAL)}

=
∫ ∫

g(Σ
B

, zAL) f(zAL,B-vec) dzAL dB-vec

=
∫ ∫

g(Σ
B

, zAL) f(zAL) f(B-vec) dzAL dB-vec

=
∫ ∫

g(Σ
B

, zAL)
f(zAL)
f?(zAL)

f?(zAL) f(B-vec) dzAL dB-vec

,
∫ ∫

g(Σ
B

, zAL)W (zAL) f?(zAL) f(B-vec) dzAL dB-vec

= E?{g(Σ
B

,ZAL)W (ZAL)} (4.16)

where g(Σ
B

,ZAL) = g(Σ
B

,YL) and is given by (4.14). We perform IS only on
the variables in ZAL = (ZA(1) · · ·ZA(L))T , for simplicity. Noting that ZAL ∼
CNL(0, I), scaling down ZAL with parameter θ leads to the weighting function

W (zAL) = θL e−
∑L

1 z†A(l)zA(l)(1−1/θ) (4.17)

The IS estimator for FAP is therefore

α̂ =
1
K

K∑

i=1

[g(Σ
B

,ZAL) W (zAL)](i); ZAL ∼ f?(zAL),B-vec ∼ f(B-vec)

(4.18)

4.5 Simulation results

The adaptive IS implementation is as usual. Simulation results for the FAP
range 10−1 − 10−7 are shown in Figures 4.1 - 4.14, for both ENAMF and
GNAMF detectors. The parameters used in the simulations are L = 128, N =
64 and the number of IS trials is K = 50000. Moreover, for L = 128, N = 64,
thresholds for these detectors can be determined using the cubic interpolation

ηe = 9.704× 10−4x3 − 1.85× 10−2x2 + 0.1595x + 0.15613 (4.19)
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ηg = 1.1439× 10−3x3 − 2.148× 10−2x2 + 0.188x + 0.184 (4.20)

where x = − log10 α.
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Figure 4.1: Inverse g-method thresholds.

4.5.1 PD in homogeneous case

In this subsection we present the detection probability of the E-NAMF and GM-
NAMF detectors in homogeneous background and compare it with that of the
NAMF detector. We set FAP to 10−6, the value of L and N are the same as in
FAP simulations. All the simulations concerning detection probability are done
using Monte Carlo (MC) technique and the number of trials used is 100000. The
detection probability in case of non-fluctuating target can be seen in Figure 4.15.
In this figure is also plotted the detection probability for the NAMF detector
obtained using the analytical formula of [15]. The figure shows that the three
detectors perform almost the same in the presence of homogeneous clutter. In
fact, the E-NAMF and NAMF perform exactly the same while the GM-NAMF
has a very small loss compared to the other two detectors. Simulations are also
done to estimate detection probability when the Swerling I fluctuating target
model is used. The result is presented in Figure 4.16. Similarly, in this case
the detectors have almost the same performance. From these simulation results
we can conclude that, in homogeneous case, regardless of the target fluctuation,
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Figure 4.2: FAP estimates.
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Figure 4.3: Gain estimates.
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Figure 4.4: Ig function estimates.
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Figure 4.5: Optimum biasing parameter estimates.
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Figure 4.6: Threshold as function of FAP.
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Figure 4.7: Gain as function of FAP.
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Figure 4.8: Inverse g-method thresholds.

both the E-NAMF detector and the GM-NAMF detector perform as well as the
NAMF detector.

4.5.2 PD in the presence of nonhomogeneities

In this subsection we will show the simulation results that compare the perfor-
mance of the envelope, geometric mean and square law NAMF detectors in the
presence of nonhomogeneities. The nonhomogeneities considered here are two
interfering targets in the secondary data. In the simulations we assumed the
interfering targets to have the same power and the same steering vector as the
actual target. Figure 4.17 shows the comparison of the performance of E-NAMF,
GM-NAMF and NAMF in the presence of 2 interferers when the target signal
is constant, i.e. non-fluctuating. In Figure 4.18 is plotted the detection proba-
bility when both the target and the interferers are assumed to be fluctuating.
For both target models, it can be seen that the NAMF detector, for a fix PD,
has a significant detection loss compared to the envelope and geometric mean
variants and that the GM-NAMF performs slightly better than the E-NAMF
detector. For example, at PD = 0.5, the NAMF has detection loss about 1.2
dB w.r.t E-NAMF and 1.38 dB w.r.t GM-NAMF for the case of non-fluctuating
target and about 2 dB w.r.t E-NAMF and 2.38 dB w.r.t GM-NAMF for the
fluctuating model. This detection loss will increase for higher PD. For example,
in the case of Swerling 0 target model at PD = 0.9, NAMF has about 3 dB loss
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Figure 4.9: FAP estimates.
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Figure 4.10: Gain estimates.
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Figure 4.11: Ig function estimates.
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Figure 4.14: Gain as function of FAP.
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Figure 4.16: PD in homogeneous case, Swerling I target.
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Figure 4.17: PD in the presence of two interferers. Swerling 0 target.

w.r.t E-NAMF for the same case and 5.5 dB loss w.r.t NAMF in homogeneous
Gaussian background. It has also to be noticed that in the fluctuating target
scenario the presence of nonhomogeneities produces a loss in term of PD per-
formance much more significant that in the nonfluctuating case, especially in
the region of high SNR. From these results we conclude that in the presence
of nonhomogeneities the E-NAMF and GM-NAMF detectors are much robust
than the NAMF detector. Also, we compare the detection performance of the
class of NAMF detectors with the AMF detector and its envelope and geometric
mean variants. In Figure 4.19 and 4.20 these performance are shown respec-
tively for the Swerling 0 and Swerling 1 target model. The nonhomogeneities
considered here are the same as in the previous case. Properties of the two
detector classes are summarized in Table 4.1. From these results, we conclude
that the geometric mean and envelope detectors of the NAMF class have the
best detection performance in the presence of interfering targets.
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Figure 4.18: PD in the presence of two interferers. Swerling 1 target.
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Figure 4.19: PD comparison in the presence of two interferers. Swerling 0 target.
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Figure 4.20: PD comparison in the presence of two interferers. Swerling 1 target.

Table 4.1: PD comparison of AMF and NAMF STAP detectors.

Q AMF E-AMF GM-AMF NAMF E-NAMF GM-NAMF
CFAR? Yes Yes Yes Yes Yes Yes

homog. Pd? - ε-loss ε-loss - ≈ 0 loss ≈ 0 loss
Robust? No Yes Yes No Yes Yes
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4.6 Conclusion

Envelope-law and geometric-mean variants of the NAMF detector have been
introduced. Their respective thresholds have been determined for a range of
FAPs. The detectors have been shown to have better performance in the pres-
ence of outliers in the training data while maintaining almost equal performance
as the standard square-law version in homogeneous Gaussian interference. To-
gether with the variants proposed in Chapter 2, these detectors represent robust
alternatives to conventional square-law processing.
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Chapter 5

Low-Rank STAP detectors

5.1 Introduction

In this chapter the STAP detector based on the low-rank approximation of the
normalized adaptive matched filter (LRNAMF) is investigated for its perfor-
mance. Being computationally efficient, the LRNAMF detector is a candidate
for future implementation in STAP radar detection. Its FAP performance is
analytically investigated here.

In the second section the low-rank NMF detector is described. Subject to an
approximation for the disturbance covariance matrix in a clutter dominated sce-
nario, the FAP of the LRNMF detector is known via a simple formula, [16] and
[17]. A brief description of the detector is reported here in order to summarize
the low-rank approximation. The third section provides analytical derivation
of the exact FAP of the LRNMF detector for data possessing an arbitrary co-
variance matrix. The fourth section discusses a nominal covariance model for
simulation and gives further analytical results. The fifth section discusses the
LRNAMF detector and shows how the analytical results for the LRNMF detec-
tor can be used to predict its performance. The sixth section provides simulation
results followed by a conclusion.

5.2 The LRNMF detector

The low-rank approximation to the normalized matched filter is used for target
detection in heterogeneous clutter scenarios. The background is assumed to
consist of clutter plus white Gaussian noise. The binary hypothesis test can be
written as

H0 : x = d = c + n

H1 : x = as + d = as + c + n (5.1)

75



where x is the primary data vector, c is the Gaussian clutter vector with co-
variance matrix sRc with unknown level s and known structure, n denotes the
additive white Gaussian noise vector with covariance matrix σ2I, where I is the
N × N identity matrix and the noise power σ2 is unknown, s is the steering
vector and a is the unknown target amplitude. The vector d is used to represent
the sum of the clutter and the white Gaussian noise. The covariance matrix of
the disturbance d is

Rd = sRc + σ2I (5.2)

In many real cases the clutter covariance matrix Rc has rank r which is less
than N . This fact will be used to approximate the inverse of the disturbance
covariance matrix which will be used in the NMF test. The matrix Rd can be
expressed as

Rd = UDU† (5.3)

where U is the matrix whose columns are the normalized eigenvectors of Rd and
D is the diagonal matrix of the eigenvalues of Rd. When Rc has rank r ¿ N ,
then Rd can be rewritten as

Rd =
r∑

i=1

(sλi + σ2)uiu
†
i +

N∑

i=r+1

σ2uiu
†
i (5.4)

The inverse covariance matrix is

R−1
d =

r∑

i=1

(sλi + σ2)−1uiu
†
i +

N∑

i=r+1

σ−2uiu
†
i (5.5)

The previous expression can be rewritten as

R−1
d =

1
σ2

r∑

i=1

uiu
†
i

(1 + sλi

σ2 )
+

N∑

i=r+1

σ−2uiu
†
i

=
1
σ2

∑N

i=1
uiu

†
i −

1
σ2

r∑

i=1

sλi

σ2

(1 + sλi

σ2 )
uiu

†
i

=
1
σ2

(
I−

r∑

i=1

sλi

σ2

(1 + sλi

σ2 )
uiu

†
i

)
(5.6)

For a clutter-to-noise ratio (CNR) much greater than one, i.e. sλi À σ2, the
inverse of the disturbance covariance matrix can be approximated as [18],

R−1
d ≈ 1

σ2
(I−P) (5.7)

where
P =

∑r

i=1
uiu

†
i (5.8)
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is a rank r projection matrix formed with the r eigenvectors corresponding to
the r dominant eigenvalues of Rd. Using (5.7) in the NMF test of (3.1), we
obtain the LRNMF test

ΛLR ≡ |s†(I−P)x|2
(s†(I−P)s)(x†(I−P)x)

H1

≷
H0

η (5.9)

It can be noticed that the LRNMF test is invariant to the unknown clutter level
s and to the noise power σ2. Moreover, since (I−P) is also a projection matrix
of rank (N − r), (I − P)2 = (I − P), therefore we can define the transformed
vectors s1 = (I−P)s, x1 = (I−P)x and rewrite the test as

ΛLR ≡ |s†1x1|2
(s†1s1)(x

†
1x1)

H1

≷
H0

η (5.10)

It is important to observe that the low rank NMF test is the squared cosine
of the angle between the transformed steering vector s1 and the transformed
data vector x1. Fast simulation can be performed using rotation of the primary
data vector x1 as described in Section 3.2.2 for the NMF detector; of course,
since the two vectors in this case are not the same as for the NMF case, the IS
performance will be different.

5.2.1 FAP approximation: low clutter rank and high CNR

The FAP for the LRNMF detector is derived in [17] and is given by

α
LRNMF

= (1− η)N−r−1 (5.11)

A crucial point of the LRNMF detector is the clutter rank estimation. The
threshold for the LRNMF test, for a fixed FAP, will depend on the rank r of the
clutter covariance matrix, specifically it increases with increasing r. A technique
for clutter rank estimation can be found in [19]. The case r = 0 coincides with
the full rank NMF test, which is invariant to the white noise level.

5.3 The LRNMF detector: arbitrary covariance
Rd

In this section we derive two alternate expressions for the exact FAP of the
LRNMF detector in (5.9). In particular, we do not assume that (I − P) in
(5.7) whitens the primary vector X, as is required for the derivation of the FAP
formula in (5.11). These exact forms are valid for any primary covariance matrix
Rd. The first expression involves singular multivariate Gaussian distributions
whereas the second does not.

For ease of notation we denote the projection matrix (I−P) by Q, which is
idempotent. The LRNMF test of (5.9) can then be written as

ΛLR ≡ |s†Q2x|2
(s†Q2s)(x†Q2x)

H1

≷
H0

η (5.12)
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Define the transformed vectors

x1 = Qx and s1 = Qs (5.13)

Then

R1 = E
{
X1X

†
1

}
= QE

{
XX†}Q† = QRdQ† (5.14)

As Q is a singular matrix, the matrix R1 is also not of full rank. This fol-
lows from the property of the rank of a product of matrices1. Hence X1 ∼
SCNN (0,R1), where SCN indicates a singular multivariate Gaussian distribu-
tion2. Using the above transformations the test becomes

ΛLR ≡ |s†1x1|2
(s†1s1)(x

†
1x1)

=
|s†1x1|2

‖s1‖2‖x1‖2 =
|(s†1/‖s1‖) x1|2

‖x1‖2 =
|t†x1|2
‖x1‖2 (5.17)

where t ≡ s1/‖s1‖ is a unit vector.

5.3.1 Exact FAP: using singular Gaussian distributions

Define a unitary transformation t1 = Ht, such that the unit vector t1 has
a single element equal to 1 and the remaining (N − 1) elements are zero, i.e.,
t1 = (0, . . . , 0, 1)T . The matrix H can be an Householder transformation matrix
given by

H = I− 2uu†

‖u‖2 (5.18)

and

u = t +
ti‖t‖
|ti| ei (5.19)

where
ei = [0, . . . , 0, 1, 0, . . . , 0]T (5.20)

1rank(AB) ≤ min( rank(A), rank(B) )

2A complex Gaussian vector x of N components with covariance matrix R and mean vector
µ is said to have a singular multivariate Gaussian distribution if rank(R) = p < N . Using the
factorization

R = U

[
Dλ 0
0 0

]
U† (5.15)

the covariance matrix can be written as R = U1DλU†
1, where U = [U1,U2] is an N × N

orthogonal matrix, U1 is an N×p column orthogonal matrix, and Dλ = diag(λ1, . . . , λp) with

λ1 > 0 for i = 1, . . . , p. Define R− ≡ U1D
−1
λ U†

1, the generalized inverse of R = U1DλU†
1.

The p.d.f. of x is given by

f(x) =
1

πN |Dλ|
exp{(x− µ)†R−(x− µ)} (5.16)

where x lies on the p-dimensional linear subspace defined by

L†(x− µ) = 0; L : N × (N − p), L†R = 0, L†L = IN−p
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has 1 as the ith element and zero elsewhere. The transformation by the matrix
H will eliminate all the elements of t except the element ti. Note that H is an
Hermitian unitary matrix

H−1 = H† = H (5.21)

We will construct the H matrix in order to preserve only the Nth element of
the vector t. The likelihood ratio in (5.17) now takes the form

ΛLR =
|t†1Hx1|
x†1x1

(5.22)

Now define

y = Hx1

Ry = E
{
yy†

}
= HE

{
x1x

†
1

}
H† = HR1H† (5.23)

where y ∼ SCNN (0,Ry). The vector x1 in the test can be replaced by

x1 = H−1y = H†y = Hy (5.24)

Then, the likelihood ratio of (5.22) and corresponding test can be rewritten as

ΛLR =
|t†1y|

y†H†Hy
=
|t†1y|
y†y

=
|yN |2
N∑

i=1

|yi|2
H1

≷
H0

η (5.25)

where yi, i = 1, . . . , N are the elements of the vector y. Now we can write the
test in the form

|yN |2
H1

≷
H0

η
(
|yN |2 +

N−1∑

i=1

|yi|2
)

|yN |2(1− η)
H1

≷
H0

η
N−1∑

i=1

|yi|2

|yN |2
H1

≷
H0

η0

N−1∑

i=1

|yi|2

|yN |
H1

≷
H0

(
η0

∑N−1

i=1
|yi|2

)1/2

(5.26)

where η0 = η/1− η.
Define the (N − 1) vector ỹ ≡ (y1, . . . , yN−1)T , u1 ≡ |yN |, and

b(η, ỹ) ≡
(
η0

∑N−1

i=1
|yi|2

)1/2

(5.27)
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Then, the FAP is given by

α
LRNMF

= P
(
|YN | ≥

(
η0

∑N−1

i=1
|Yi|2

)1/2)

= E
{

P
(
U1 ≥ b(η, Ỹ)

∣∣Ỹ
)}

, E
{
g(η, Ỹ)

}
(5.28)

and the g function can be expressed in integral form as

g(η, ỹ) =
∫ ∞

b(η,ỹ)

f(u1|ỹ)du1 (5.29)

The conditional distribution of YN is also Gaussian and we have to determine
the conditional mean and variance. The vector y can be written as y = [ỹ; yN ]
and the covariance matrix of y can be partitioned as

Ry =
[

E{ỸỸ†} E{ỸY †
N}

E{YNỸ†} E{YNY †
N}

]
=

[
Rỹ Rỹy

N

Ry
N

ỹ σ2
y

N

]
(5.30)

where Rỹ is the (N − 1) × (N − 1) singular covariance matrix of the vector ỹ
and σ2

y
N

is the variance of the random variable YN . The conditional mean and
variance of YN are

E{YN |ỹ} = Ry
N

ỹR−
ỹ ỹ = cT ỹ =

N−1∑

i=1

ci yi

var{YN |ỹ} = σ2
yN
−Ry

N
ỹR−

ỹ Rỹy
N

(5.31)

where cT ≡ Ry
N

ỹR−
ỹ , ci, i = 1, . . . , N − 1 are the elements of the vector c, and

R−
ỹ is the g-inverse of Rỹ.
Conditioned on the vector Ỹ, the random variable YN is Gaussian with

mean and variance given in the expressions above. Then the random variable
U1 = |YN | has a Rice distribution with noncentrality parameter

s2 =
∣∣∣
∑N−1

i=1
ci yi

∣∣∣
2

(5.32)

and parameter
σ2 = var{YN |ỹ}/2 (5.33)

Hence the integral in (5.29) can be written as

g(η, ỹ) =
∫ ∞

b(η,ỹ)

u1

σ2
exp

[− (u2
1 + s2)/2σ2

]
I0(u1s/σ2) du1 (5.34)
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and the FAP becomes

α
LRNMF

=

∞∫

−∞
. . .

∞∫

−∞

∞∫

b(η,ỹ)

u1

σ2
exp

[− (u2
1 + s2)/2σ2

]
I0(u1s/σ2) f(ỹ) du1dỹ

(5.35)
where f(ỹ) is the density corresponding to the singular Gaussian distribution
SCNN−1(0,Rỹ). This is one expression for the FAP of the LRNMF detector
for arbitrary covariance matrix Rd of the primary data vector.

5.3.2 Exact FAP: using nonsingular Gaussian distributions

We start with the covariance matrix R1 of X1 ∼ SCNN (0,R1) having some
rank say p < N in (5.14) and write its decomposition as

R1 = QRdQ† = VΛV† (5.36)

where V is the matrix of eigenvectors corresponding to the eigenvalues {λi}N
1

in the diagonal matrix Λ, which can be written as

Λ =




λ1 0 . . . 0
0 . . . . .
. . λp . . .
. . . 0 . .
. . . . . 0
0 . . . 0 0




(5.37)

Define

Λp ≡




λ1 0 . . 0
0 . . . .
. . . . .
. . . . 0
0 . . 0 λp




(5.38)

and

Vp ≡ upper left block of V ∈ Rp×p

VN−p ≡ lower left block of V ∈ R(N−p)×p (5.39)

Using these definitions we can write R1 as

R1 =

(
Vp Λp V†

p Vp Λp V†
N−p

VN−p Λp V†
p VN−p Λp V†

N−p

)
(5.40)

which also turns out to be the covariance matrix of a new vector X1 defined as

X1 ≡
[

Vp

VN−p

]

︸ ︷︷ ︸
N×p

Λ1/2
p W; W ∼ CN p(0, I) (5.41)
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and hence this new X1 is statistically identical to the vector X1 in the beginning
of this subsection. This is a well known representation ([20]) for expressing a
singular Gaussian vector in terms of a nonsingular Gaussian vector with inde-
pendent components.

Substituting this definition into (5.17) yields the likelihood ratio

ΛLR =
|t†x1|2
‖x1‖2

=

∣∣∣∣ t†
[

Vp

VN−p

]
Λ1/2

p W
∣∣∣∣

2

W†Λ1/2
p

[
V†

p V†
N−p

] [
Vp

VN−p

]
Λ1/2

p W

=

∣∣∣∣ t†
[

Vp

VN−p

]
Λ1/2

p W
∣∣∣∣

2

W†ΛpW
(5.42)

Now define
Y ≡ Λ1/2

p W (5.43)

and the p× 1 unit vector

t1 ≡
[

V†
p V†

N−p

]
t (5.44)

Then Y ∼ CN p(0,Λp) and the likelihood ratio becomes

ΛLR =
|t†1y|2
y†y

(5.45)

Next we find a unitary transformation H (not to be confused with the unitary
transformation H defined on page 78) such that

e1 ≡ Ht1 =
(

1 · · · 0
)T (5.46)

Then the likelihood ratio can be written as

ΛLR =
|e†1Hy|2

y†y
(5.47)

Defining
Z ≡ HY (5.48)

leads to

ΛLR =
|e†1z|2
z†z

(5.49)

with Z ∼ CN p(0,Rz) where

Rz = HΛpH† (5.50)
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The likelihood ratio test can therefore be written as

|z1|2
p∑

i=1

|zi|2
H1

≷
H0

η (5.51)

where the zi’s denote the components of z. Rearranging yields

|z1|
H1

≷
H0

(
ηo

∑p

i=2
|zi|2

)1/2

(5.52)

where ηo = η/(1 − η), which can be considered (somewhat loosely speaking)
as the nonsingular version of the test in (5.26) on page 79. The rest of the
derivation for FAP is similar to those in Section 5.3.1 but we go through the
steps.

Defining z̃ ≡ (
z2 · · · zp

)T , the covariance matrix Rz can be parti-
tioned as

Rz = E

{[
Z1

Z̃

] [
Z?

1 Z̃†
]}

=
[

E{|Z1|2} E{Z1Z̃†}
E{Z̃Z?

1} E{Z̃Z̃†}
]

,
[

σ2
1 Rz1z̃

Rz̃z1 Rz̃

]
(5.53)

The random variable Z1 is conditionally Gaussian with density f(z1 | z̃) cor-
responding to the distribution CN 1(µc, σ

2
c ) where the conditional mean and

variance µc and σ2
c are given by

µc = E{Z1 | z̃} = Rz1z̃ R−1
z̃ z̃

σ2
c = var(Z1 | z̃) = σ2

1 −Rz1z̃ R−1
z̃ Rz̃z1 (5.54)

The random variable U ≡ |Z1| is then conditionally Rice with density

f(u | z̃) =
u

σ2
exp

[− (u2 + s2)/2σ2
]
I0(us/σ2), u ≥ 0 (5.55)

where s = |µc| and σ2 = σ2
c/2. Defining

b(η, z̃) ≡
(
η0

∑p

i=2
|zi|2

)1/2

(5.56)

the FAP of the test in (5.52) can be expressed as

α
LRNMF

= P
(
|Z1| ≥

(
η0

∑p

i=2
|Zi|2

)1/2)

= E
{

P
(
U ≥ b(η, Z̃)

∣∣Z̃
)}
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, E
{
g(η, Z̃)

}
(5.57)

where
g(η, z̃) =

∫ ∞

b(η,z̃)

u

σ2
exp

[− (u2 + s2)/2σ2
]
I0(us/σ2) du (5.58)

using (5.55). Then, similarly to (5.35), the FAP can be written as

α
LRNMF

=
∫ ∞

−∞
. . .

∫ ∞

−∞

∫ ∞

b(η,z̃)

u

σ2
exp

[− (u2 + s2)/2σ2
]
I0(us/σ2) f(z̃) du dz̃

(5.59)
where f(z̃) corresponds to the (nonsingular) density of CN p−1(0,Rz̃). This is
the second expression for the exact FAP of the LRNMF detector for arbitrary
covariance matrix Rd of the primary data vector.

5.4 Nominal statistical model for simulation and
threshold setting

A nominal statistical model for the radar returns in the (target-free) primary
data vector is required in order to be able to specify a covariance matrix Rd

under the Gaussian assumption. Such a model can then be used to derive thresh-
old settings for desired FAP values for the detector either through simulation
or through direct computation of FAP expressions.

For the disturbance covariance Rd = sRc + σ2I in (5.2) we start again with
the low clutter-rank approximation of (5.4) on page 76 as

Rd =
r∑

i=1

(sλi + σ2)uiu
†
i +

N∑

i=r+1

σ2 uiu
†
i

= UDU† (5.60)

and identify the matrix of eigenvalues D as

D = diag
(

sλ1 + σ2, . . . , sλr + σ2, σ2, . . . , σ2 )

= σ2 diag
(

1 + sλ1/σ2, . . . , 1 + sλr/σ2, 1, . . . , 1︸ ︷︷ ︸
N−r

)
(5.61)

Now, choice of the unitary matrix U of eigenvectors will determine the covari-
ance matrix Rd. The simplest choice that can be made (at the risk of seeming
somewhat subjective) is U = I. In such a case, Rd = D. That is

Rd = D = σ2




1 + sλ1/σ2 0 . . . 0
0 . . . . .
. . 1 + sλr/σ2 . . .
. . . 1 . .
. . . . . 0
0 . . . 0 1




(5.62)
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It turns out that this choice is not without some practical significance. In a
special case, using the high clutter-to-noise ratio assumption

sλi

σ2
À 1

with
σ2 = 1; λi = 1, i = 1, . . . , r

leads to a covariance matrix of the form

Rd = D =




s 0 . . 0
0 s . . .
. . . . .
. . . 1 0
0 . . 0 1




(5.63)

A plot of the eigenspectrum of R̂d estimated from Gaussian data generated
according to the above Rd is shown in Figure 5.1. This eigenspectrum shows
a close resemblance to the eigenspectrum estimated from KASSPER data, [17].
We note of course that this property of our model is due to the shape of the
matrix of eigenvalues D (rather than the particular choice U = I).

A consequence of the structure of the nominal covariance matrix Rd in (5.62)
is described in the following subsection.

5.4.1 Exact FAP of LRNMF detector: nominal Rd

We calculate here the FAP of the LRNMF detector when the covariance matrix
Rd of the primary data vector is as in (5.62). The assumption of high clutter-
to-noise ratio is not used. Therefore, the only restriction is on the shape of Rd.
As Rd is diagonal, it follows that its eigenvector matrix U are composed of the
columns of I and hence, for a given r, the projection matrix Q is given by

Q = I−
r∑

i=1

uiu
†
i

=
N−r∑

i=1

uiu
†
i

=




0 . . . . 0
. . . . . .
. . 0 . . .
. . . 1 . .
. . . . . 0
0 . . . 0 1




(5.64)

which is of rank N − r. Applying this and Rd in (5.62) to (5.36) yields

R1 = VΛV†
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= Q (5.65)

This implies, from (5.37), that

Λ =




1 0 . . . 0
0 . . . . .
. . 1 . . .
. . . 0 . .
. . . . . 0
0 . . . 0 0




(5.66)

p = N − r, and thus Λp in (5.38) is Λp = IN−r. Using this in (5.50) yields
Rz = IN−r. Therefore the test in (5.52) represents a simple CA-CFAR test
with FAP given by

α
LRNMF

= (1− η)N−r−1

which coincides with the expression for the LRNMF detector in (5.11) on page 77.
Therefore we can conclude that whereas the above formula is an approxima-

tion (albeit a good one) for the FAP under the assumptions of low clutter-rank
and high clutter-to-noise ratios, it is an exactitude if the covariance matrix of
the data possesses the structure in (5.62). In the latter case the clutter-to-noise
ratio does not matter.

5.5 The LRNAMF detector

The low-rank normalized adaptive filter (LRNAMF) detector is described by

ΛLR-A ≡ |s†(I− P̂)x|2
(s†(I− P̂)s)(x†(I− P̂)x)

H1

≷
H0

η (5.67)

where
P̂ =

∑r

i=1
uiu

†
i (5.68)

and {ui}N
1 are eigenvectors of the covariance matrix estimate R̂d obtained from

the secondary vectors with r being the estimated rank of the clutter component
of the disturbance.

5.5.1 FAP approximation: low clutter rank and high CNR

The main difference between the LRNMF and LRNAMF detectors (the former
given in (5.9)), for a fixed value of r used in both detectors, lies in the set of
eigenvectors {ui}N

1 used to compose the matrix P (or P̂). However, for the
low-rank clutter model of (5.4) and subject to the high clutter-to-noise ratio
approximation of (5.7), the FAP performance of the LRNMF detector is given
by the expression of (5.11) and this is independent of the eigenvectors used in the
detector. This implies that the LRNMF detector is CFAR with respect to the
structure of covariance matrices Rd of data that arise from models satisfying
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these assumptions. Therefore, for data having the same eigenspectrum as in
the above model, and for the same value of r used in both detectors, the FAP
performance of the LRNAMF detector will be, largely, equal to that of the
LRNMF detector and given by the same formula for each realization of sample
covariance matrix R̂d. The LRNAMF detector will also be approximately CFAR
under the above assumptions on clutter rank and power. Nevertheless, it must
be emphasized that the FAP expression of (5.11) is an approximation.

The above conclusion is borne out by simulation results.

5.5.2 Exact FAP: arbitrary covariance Rd

If the model assumptions do not hold, specifically in cases where the CNR is
not high, then the expressions for exact FAP of the LRNMF detector derived
in (5.35) and (5.59) can be used to determine the exact FAP of the LRNAMF
detector. Whereas the influence of the secondary vectors on the LRNAMF
detector is felt through the eigenvectors in P̂, via singular value decomposition
of the covariance matrix estimate R̂d, the FAP is affected by the covariance
matrix Rz in the expression (5.59). This matrix is derived from the eigenvectors
in P̂ through a series of transformation described in Sections 5.3 and 5.3.2 and
is, strictly speaking, a random matrix whose statistical properties are related to
those of the secondary vectors. Therefore the FAP expression for the LRNMF
detector in (5.59) can be considered as a conditional probability expression; the
average of this over the statistics of the covariance matrix Rz will produce the
exact FAP performance of the LRNAMF detector. Although it does not appear
to be analytically tractable, this fact can be formally expressed by

α
LRNAMF

= ERz{αg(Rz)}

= ERz{E{g(η, Z̃)
∣∣Rz}} (5.69)

with g(η, z̃) given in (5.58).

5.6 Simulations for LR detectors

We describe here the simulation results obtained for FAP and threshold estima-
tion for both LRNMF and LRNAMF detectors for various assumptions on the
data covariance matrix Rd. The two FAP expressions, (5.35) and (5.59), have
been used to set up estimators for FAP. The estimator for the LRNMF detector
can be written as

α̂
LRNMF

=
1
K

K∑
1

g(η, Z̃); Z̃ ∼ CN p−1(0,Rz̃) (5.70)
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For simplicity we have not used any IS. The FAP estimator for the LRNAMF
detector is configured as

α̂
LRNAMF

=
1

K2

K2∑
1

[ 1
K1

K1∑
1

[g(η, Z̃)](i)
](j)

;

Z̃ ∼ CN p−1(0,Rz̃), Rz̃ ∼ f(secondary vectors) (5.71)

where the inner simulation is conditioned on the covariance matrix Rz̃, which
depends on the data covariance Rd in place.

Detector thresholds have been estimated using the inverse method.

5.6.1 Rd models used

Three different data covariance models have been used to study the perfor-
mances of LRNMF and LRNAMF detectors for FAP as well as detection prob-
ability. The models are

Case 1 : In this model, the disturbance is assumed to be white Gaussian noise
which ideally has a flat eigenspectrum.

Case 2 In this model we use an eigenspectrum with eigenvalues ranging from
104 to 0.1, covering the same range as Model 1, but linearly (in dB) with
eigenvalue number.

Case 3 This is the nominal disturbance model which has the matrix of eigen-
values described in (5.63), and corresponds to the case of low clutter-rank
and high CNR.

Data generated using these models have estimated eigenspectra shown in Fig-
ure 5.1. Wherever detection probability results are provided for a certain model,
the detector thresholds used have been estimated to provide the stated FAPs
for that model.

5.6.2 Results for FAP

The first result for FAP of the LRNMF detector is shown in Figure 5.2 for
the eigenspectrum of Case 3. As expected, the simulation results using the
g-method coincide with the formula of (5.11), indicated by stars in the figure.
Corresponding simulation gains for the g-method are shown in Figure 5.3.

The next figure, Figure 5.4 shows results for FAP versus thresholds of the
LRNMF and LRNAMF detectors for the three eigenspectra models. Lack of
CFAR is clearly observed for both the LRNMF and LRNAMF detectors with
change in the covariance structure of the data. However, a surprising obser-
vation is that for the same data eigenspectrum, the LRNMF and LRNAMF
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Figure 5.1: Estimated eigenspectrum for the 3 data models. Clutter rank is
r = 33.

detectors match very closely in terms of achieved FAP values for given thresh-
olds3. A plausible explanation for this behaviour lies in the following arguments.
Firstly, LR detectors seem to ignore some of the information available in the
secondary vectors, depending solely on the eigenvectors obtained through spec-
tral decomposition and not on the actual estimated eigenvalues. Furthermore,
for a sufficiently large number L of secondary vectors, the estimated eigenspec-
trum resembles the actual eigenspectrum in shape. This fact may manifest
itself through the eigenvectors of the spectral decomposition. We emphasize
that although the match between LRNMF and LRNAMF detectors appears
close graphically, numerical estimates obtained for the two detectors do differ.

Estimated simulation gains for the LRNAMF detector are shown in Fig-
ure 5.5.

5.6.3 Results for detection probability

Various detection probability results are shown in Figures 5.6 - 5.9. Figure 5.6
shows that the detection probability of the LRNAMF detector is almost un-
changed from the homogeneous case in the presence of interfering targets in the

3The exception appears to be Case 2. However this is not a departure from the above
observation as the number of simulation trials for FAPs below 2 × 10−4 were insufficient,
according to gain estimates that were made. Hence more simulations are required to make a
definitive conclusion for this eigenspectrum.
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Figure 5.2: Comparison of the g-method estimator and formula (5.11) for FAP.
N = 128, r = 33. Eigenspectrum is for Case 3.

secondary data, for both Swerling 0 and 1 target models. Comparisons with
other detectors are shown in Figure 5.7 and Figure 5.8 for the eigenspectrum of
Case 3. Comparing the performance of the adaptive detectors (LRNAMF and
NAMF) for this model, the LR version performs better than the NAMF detector
for both Swerling 0 and Swerling 1 target models, not only in the homogeneous
case but also in the presence of interfering targets contaminating the secondary
vectors. On the other hand when the background is as in Case 1 (i.e., clutter has
rank zero), the NAMF detector performs better than the LRNAMF detector in
the presence of interfering targets, as shown in Figure 5.9 and Figure 5.10. In
homogeneous background the NAMF detector performs better for the Swerling
0 target model and the two detectors perform the same for Swerling 1 target
model.

90



1 2 3 4 5 6 7 8
10

2

10
3

10
4

10
5

10
6

10
7

10
8

−log
10

α

   
   

 
 Γ

LRNMF detector, g  −method, N = 128, r = 33, K = 105

Figure 5.3: Gain of the g-method for N = 128, r = 33. Eigenspectrum is for
Case 3.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

LR Detectors,  N = 64, L = 128, r = 33

η

F
A

P

 

 
case 2 LRNMF
case 3 LRNMF
case 1 LRNMF
case 1 LRNAMF
case 2 LRNAMF
case 3 LRNAMF

Figure 5.4: Thresholds versus FAP for three eigenspectrum models.

91



1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

4.5

 −log
10

 α

 −
lo

g 10
 Γ

LRNAMF, N = 64, L = 128, r = 33

Figure 5.5: Gain of the g-method for N = 64, L = 128, r = 33. Eigenspectrum
is for Case 3.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 SNR  (dB)

P
d

LRNAMF detector,  N = 64, L = 128, r = 33, P
fa

=10−6

 

 

homogeneous
2 interferers

Swerling 0

Swerling 1

Figure 5.6: Detection probability for LRNAMF detector, N = 64, L = 128.
Eigenspectrum is for Case 3.

92



10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 SNR  (dB)

P
d

Swerlin 0,  N = 64, L = 128, r = 33, P
fa

=10−6

 

 

LRNAMF

NAMF Homog.

NAMF 2 interferers

LRNMF Homog.

NMF Homog.

Figure 5.7: Detection probability comparisons, N = 64, L = 128. Eigenspec-
trum is for Case 3.

10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 SNR  (dB)

P
d

Swerling 1,  N = 64, L = 128, r = 33, P
fa

=10−6

 

 

LRNAMF

NAMF Homogeneous

NAMF 2 interferers

LRNMF Homogeneous

NMF Homogeneous

Figure 5.8: Detection probability comparisons, N = 64, L = 128. Eigenspec-
trum is for Case 3.

93



10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
d

 Swerling 0,  R
d
 = I, P

fa
=10−6

 

 

LRNAMF Homo
LRNAMF 2 int
NMF Homo
LRNMF Homo
NAMF Homo
NAMF 2 int

Figure 5.9: Detection probability comparisons (Swerling 0), N = 64, L = 128.
Eigenspectrum is for Case 1.

10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
d

Swerling 1, R
d
 = I, P

fa
=10−6

 

 

LRNAMF Homo
LRNAMF 2 int
NMF Homo
LRNMF Homo
NAMF Homo
NAMF 2 int

Figure 5.10: Detection probability comparisons (Swerling 1), N = 64, L = 128.
Eigenspectrum is for Case 1.

94



5.7 Conclusion

In this chapter some theoretical investigations have been made into the perfor-
mance of low-rank STAP detectors. Principally, we have been able to character-
ize the FAP performance of LRNAMF detectors in terms of detection thresholds
and disturbance backgrounds. Several detection probability simulation results
have also been obtained. Some of these results are surprising and might seem
somewhat counterintuitive. We have not been able to find complete justifica-
tions for these observations and clearly further work is required.
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Importance sampling for characterizing STAP
detectors

Rajan Srinivasan and Muralidhar Rangaswamy

Abstract— This paper describes the development of adaptive
importance sampling techniques for estimating false alarm prob-
abilities of detectors that use space-time adaptive processing
(STAP) algorithms. Fast simulation using importance sampling
methods has been notably successful in the study of conventional
constant false alarm rate (CFAR) radar detectors, and in several
other applications. The principal objectives here are to examine
the viability of using these methods for STAP detectors, develop
them into powerful analysis and design algorithms and, in the
long term, use them for synthesizing novel detection structures.
The adaptive matched filter (AMF) detector has been analyzed
successfully using fast simulation. Of two biasing methods con-
sidered, one is implemented and shown to yield good results.
The important problem of detector threshold determination is
also addressed, with matching outcome. As an illustration of
the power of these methods, two variants of the square-law
AMF detector that are thought to be robust under heterogeneous
clutter conditions have also been successfully investigated. These
are the envelope-law and geometric-mean STAP detectors. Their
CFAR property is established and performance evaluated. It
turns out the variants have detection performances better than
those of the AMF detector for training data contaminated by
interferers. In summary, the work reported here paves the way
for development of advanced estimation techniques that can
facilitate design of powerful and robust detection algorithms.

Keywords STAP, AMF, Importance Sampling (IS), CFAR,
GM-STAP, E-AMF, Homogeneous clutter, Complex Gaussian
PDF.

I. I NTRODUCTION

Estimation of false alarm probabilities of detection algo-
rithms that employ space-time processing is examined here
using forced Monte Carlo (MC) or importance sampling (IS)
simulation. Space-time adaptive processing algorithms are
of much importance for radar detection, [1], [2]. They are
notoriously intensive from a computational point of view, with
the more advanced (and robust) ones being also analytically
difficult to quantify. Therefore, it is appropriate to attempt to
develop fast simulation methods that could be used in their
analysis and design.

The work of the first author was supported by the European Office of
Aerospace Research and Development, London, UK, in collaboration with
the Air Force Office of Scientific Research under Award No. FA8655-04-1-
3025. Portions of this paper were presented at the IEEE International Radar
Conference, Washington, DC, USA, May 2005.

R. Srinivasan is with the Telecommunication Engineering Group, Uni-
versity of Twente, PO 217, 7500 AE Enschede, The Netherlands (email:
r.srinivasan@ewi.utwente.nl).

M. Rangaswamy is with the Air Force Research Lab-
oratory Sensors Directorate, Hanscom AFB, MA, USA
(email:Muralidhar.Rangaswamy@hanscom.af.mil).

In the following we use lessons learnt from developing
IS techniques for characterizing conventional CFAR detec-
tors and describe an experiment in applying them to STAP
detection. The starting point of this effort is the celebrated
AMF detector derived in [2] and which represents the array
version of the workhorse cell averaging (CA) CFAR detector
for conventional radar signal processing algorithms. The false
alarm probability (FAP) performance of the AMF detector is
known in integral form under certain conditions and can be
numerically computed to any desired accuracy. Thus it forms a
suitable basis for validating our simulation experiments. Two
specific IS methods (described in the sequel) are presented
and the better (and also easier) one is implemented. As a
demonstration of the power of IS methods, the envelope-
law and geometric mean detectors are presented and analyzed
using fast simulation. These are variants of the AMF detector
and their FAPs are not known in analytical form. Their CFAR
property is established and FAP behaviour characterized using
IS. A brief comparison of detection performances of all 3
detectors is made. In the long term, our aim is to develop
and apply these fast simulation techniques to modern STAP
detection algorithms (see [3] - [5], and references therein). An
important goal in this context is to devise IS biasing methods
that result in simulation times that grow slowly with decreasing
FAPs. This remains an open problem.

As well known now, IS is the chief simulation methodology
for rare-event estimation. It is an enduring method that has
had success in several areas of science and engineering, [6].
Briefly, IS works by biasing original probability distributions
in ways that accelerate the occurrences of rare events, con-
ducting simulations with these new distributions, and then
compensating the obtained results for the changes made. The
principal consequence is that unbiased probability estimates
with low variances are obtained quickly. The main task in IS
therefore is determination of good simulation distributions for
an application. Simulations performed using such distributions
can provide enormous speed-ups and, if applied successfully,
simulation lengths needed to estimate very low probabilities
can become (only) weakly dependent on the actual probabili-
ties. When these probabilities satisfy a large deviations princi-
ple, then several asymptotic results are available for devising
simulation distributions, [6]. For most detection applications
however, it appears that adaptive methods which attempt to
minimize error variances might be better suited. There have
been some recent attempts in the literature, for example [7],
[8], to apply IS for FAP estimation of CFAR detectors with
varying degrees of success. Our work uses results developed
in [9] and [10], with an adaptive implementation of the so
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called g-method. Recent theoretical and application work on
this method can be found in [11] and [12]. The groundwork
for the present results was laid down in [15] which, to our
knowledge, is the first article on the topic of using IS for
studying STAP detection algorithms.

During the conduct of simulations reported herein, some
issues concerning the adaptive IS algorithms used arise, and
these are discussed briefly. The positive outcome of the
methods used is that excellent match with numerical results is
obtained. The succeeding sections provide a brief statement
of the detector tests, how IS biasing can be performed to
hasten false alarm events, description of theg-method which
is a conditional IS technique developed originally for studying
sums of random variables [9], howinverse IScan be used to
estimate (and choose) detector thresholds, a methodology for
using the fast adaptive algorithms, simulation results, and a
conclusion.

II. STAP DETECTOR VARIANTS

In a radar system consisting of a linear array ofNs antenna
elements a burst ofNt pulses is transmitted, resulting in a
return of NsNt = N samples in each range gate. TheN
complex samples are arranged in anN × 1 column vector
and there areL + 1 such returns. The range gate return to
be tested for the presence of target is called the primary data
and is denoted byx while the remaining vectors are known
as the training (or secondary) data, assumed to be free of
target signal, and denoted byx(l), l = 1, . . . , L. A target
return is modelled as consisting of anN × 1 steering vectors
with an unknown complex amplitude in addition to clutter,
interference, and noise. The primary and secondary data
vectors are assumed to be jointly independent and zero-mean,
spherically symmetric complex Gaussian, sharing theN ×N
covariance matrixR = E{XX†}, where the superscript†
denotes complex conjugate transpose.

A. The AMF (square-law) STAP detector

Under these assumptions the AMF detection test, as ob-
tained in [2], is given by

|s†R̂−1x|2
s†R̂−1s

H1

≷
H0

η (1)

where

R̂ ≡ 1
L

L∑

l=1

x(l)x(l)†

is the estimated covariance matrix ofx based on the secondary
data (also referred to as sample matrix), andη is a threshold
used to set the FAP at some desired level. This test has the
CFAR property. The FAPα of the test is known to be given
by

α =
L!

(L−N + 1)!(N − 2)!

∫ 1

0

xL−N+1(1− x)N−2

(1 + η x/L)L−N+1
dx

(2)

which can be used to numerically determine the threshold
setting for a desired FAP. As shown in [2], the test in (1)
can be rewritten as

| s†R̂−1x|2
H1

≷
H0

η s†R̂−1s

=
η

L

L∑

l=1

| s†R̂−1x(l)|2 (3)

This is in the form of a vector (or, array) version of the
usual CA-CFAR test. The LHS is a square law detector,
being the output of a matched filter (matched to the direction
s in which the array is steered) for incoherent detection
using the so-called sample matrix inversion (SMI) beamformer
weights R̂−1s. The RHS represents a cell averaging term.
Further details on these issues can be found in the references
mentioned above.

B. The AMF (envelope-law) STAP detector

In contrast to square-law detectors, it is known to radar
engineers that envelope detectors possess some robustness
properties in terms of detection performance when the training
data is contaminated by outliers or inhomogeneities. Accord-
ingly, the envelope-law STAP version of the AMF (abbreviated
hereafter as E-AMF) detector is proposed here and its detec-
tion properties evaluated. It takes the form

| s†R̂−1x|
H1

≷
H0

η
E

L

L∑

l=1

| s†R̂−1x(l)| (4)

where η
E

denotesthe threshold multiplier. An analytical
expression or approximation for the FAP of this detector is
not known.

C. The geometric-mean STAP detector

Also proposed here is the geometric-mean STAP version of
the AMF detector (abbreviated as GM-STAP). Conventional
CFAR detectors that calculate the geometric means of the
range cells in the CFAR window (usually referred to as log-t
detectors) are known to have robustness properties. The STAP
variant1 takes the form

| s†R̂−1x|
H1

≷
H0

η
G

(
L∏

l=1

| s†R̂−1x(l)|
)1/L

(5)

where η
G

denotes the threshold multiplier. Note that the
GM-based square- and envelope-law versions are identical
(except for a trivial squaring of threshold multiplier). For
the sake of completeness, the value of the multiplier as
the number of training vectorsL → ∞ is calculated. In

such a case,̂R
−1 p−→ R−1, s† R̂

−1
X D−→ s†R−1X,

and s† R̂
−1

X(l) D−→ s†R−1X(l) in the absence of tar-
get. As s†R−1X and s†R−1X(l) are i.i.d. and distributed
as CN 1(0, s†R−1s), it follows that the squared envelopes
| s†R−1X|2 and | s†R−1X(l)|2 are exponentially distributed,

1This test was actually suggested in [16] but its performance was not
evaluated.
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each with means†R−1s. Using convergence arguments based
on continuity, [14], it is straightforward to show that the
asymptotic FAP of the GM detector isexp(−η2

G
exp(−γ))

whereγ is the Euler constant. Hence the (asymptotic) thresh-
old η

G
required to provide a FAP of10−6 is 4.9605. A similar

calculation can be easily made for the E-AMF detector.
Both the E-AMF and GM-STAP detectors have the CFAR

property under the assumption of homogeneous Gaussian
characterization as stated in the beginning of this section; their
FAPs are independent of the true target-free covarianceR.
This is shown in Appendix I.

III. FAP ESTIMATION USING IS

This section describes procedures to quickly estimate the
FAPs and threshold multipliers of STAP detectors using IS.
The standard (square-law) AMF detector is used for ex-
position. The detector variants are handled using parallel
arguments.

The actual form of biasing considered here is simple scaling.
While other techniques (superior in terms of simulation gains)
can be devised, scaling is easy to implement and yields
conservative but reasonable results.

A. Square-law AMF detection

Two strategies to estimate FAPs using IS are two-
dimensional (2-d) biasing and the conditionalg-method pro-
cedure, described in this section. The 2-d biasing scheme
parallels the approach used in previous works on conventional
CFAR algorithms, as cited in the introduction. It can be useful
in situations wherein the more powerfulg-method might be
difficult to apply.

1) 2-d biasing: To estimate FAP using IS, we make the
following observations. Suppose each complex sample of a
secondary vector is scaled by a real (and positive) number
θ1/2. This has the effect of scaling the covariance matrix
estimateR̂ by θ. Therefore, as far as the covariance estimate
is concerned, both sides of the test in (3) remain unaffected
by the scaling. However, each secondary vector being scaled
by θ1/2 results in an additional scaling of the RHS byθ.
Hence choosingθ less than unity will have the effect of
compressing the density function of the random threshold of
the test. Further, a scaling of each complex component of the
primary vector by a real positivea1/2 will achieve a scaling
of the LHS of the test bya. Thus, choosinga larger andθ
smaller than unity will achieve an increase in the frequency
of occurrence of false alarm events during simulation. The IS
optimization problem will be a two-parameter one.

Denoting byA the false alarm event in (3), the unbiased IS
estimator in an i.i.d. (independent and identically distributed)
simulation can be expressed as

α̂ =
1
K

K∑

i=1

[1(A) W (X,XL; a, θ)](i); X,XL ∼ f? (6)

whereK is the length (or number of trials) of the IS simu-
lation, 1(·) denotes the indicator,XL ≡ (X(1), . . . ,X(L))T ,
and the notation∼ f? means that all random variables are
drawn from biased distributions. The weighting functionW

is described below. In setting up the joint densities ofX and
XL, we use the fact that the FAP of the AMF has the CFAR
property and is independent of the true covariance matrixR.
This is so under the assumption of Gaussian distributions for
the data. In such a case, the simulation of the AMF test can be
carried out for data possessing a diagonal covariance matrix
I, denoting theN × N identity matrix. Therefore, primary
and secondary data can be generated as complex vectors with
independent components. The unbiased joint densities are

f(x) =
e−x†x

πN
andf(xL) =

e−
∑L

1 x(l)†x(l)

πLN

so that

f(x,xL) =
e−x†x−∑L

1 x(l)†x(l)

π(L+1)N

With scaling performed as described above, the biased joint
density takes the form

f?(x,xL) =
e−

1
a x†x− 1

θ

∑L
1 x(l)†x(l)

π(L+1)NaNθLN

resultingin the weighting function

W (X,XL; a, θ) ≡ f(x,xL)
f?(x,xL)

= CaNθLNeA/aeB/θ (7)

where

A ≡ x†x, B ≡
L∑
1

x(l)†x(l), andC ≡ e−(A+B) (8)

The variance of the IS estimator̂α can be expressed as

varα̂ =
1
K

[I(ν)− α2] (9)

with ν denoting the vector biasing parameter(a, θ)T ∈
[1,∞)× (0, 1]. The quantityI is given by

I(ν) = E?{1(A)W 2(X,XL; ν)}
= E{1(A)W (X,XL; ν)} (10)

where the expectationE? proceeds over biased distributions.
Minimization of varα̂ with respect to the biasing parameters
is equivalent to minimization ofI and is described in Ap-
pendix II.

2) The g-method estimator:This method exploits knowl-
edge of underlying (input) distributions more effectively, yield-
ing a more powerful estimator. Additional advantages are that
only a scalar parameter optimization problem needs to be
tackled and theinverse ISproblem (for threshold optimization
or selection) can be easily solved. The FAP can be written as

α = P (A)

= E{P (| s†R̂−1X|2 > η s†R̂−1s | XL,H0)}
, E{g(XL)} (11)

whereg(XL) denotes the conditional probability in the second
step. The conditioning implies that the covariance matrix
estimateR̂ is given. We proceed to estimateα using the form
in the third step above.
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With the conditioning in mind it is easy to show, assuming
thatX is rotationally invariant and Gaussian, that the random
variable s†R̂−1X , w†X is distributed asCN 1(0,w†Rw)
with independent real and imaginary components, and the
weight vectorw = R̂−1s. Hence the random variableY ,
|s†R̂−1X|2 is exponential and has the density function

f(y|XL,H0) =
e−y/w†Rw

w†Rw
, y ≥ 0

Therefore

g(XL) = P (Y ≥ η s†R̂−1s | XL,H0)
= e−η D

where

D ≡ s†R̂−1s
w†Rw

Notethat if R̂ = R, theng(XL) = e−η and this is the FAP of
the AMF when the covariance matrix is known. As discussed
before, we run simulations with homogeneous data possessing
an identity covariance matrix, that is, withR = I. The g-
method IS estimator then takes the form

α̂g =
1
K

K∑

i=1

[g(XL)W (XL; θ)](i)

=
1
K

K∑

i=1

[e−η DW (XL; θ)](i); ∼ f? (12)

with D given by

D =
s†R̂−1s
‖w‖2

=
s†R̂−1s

s†(R̂−1)2s
(13)

Now, choosing the (single) biasing parameterθ < 1 pro-
duces a decrease inD, thereby causing a higher frequency of
occurrence of the false alarm event or, more appropriately in
this case, a larger value of theg-function. Note that use of
the g-method obviates the need to bias primary data vectors.
Determination of a good value ofθ proceeds as described in
Appendix II. The weighting function is simply

W (xL; θ) = θLNe−(1−1/θ)B (14)

which can be deduced from (7) by settinga = 1. The variance
of this estimator is given by

varα̂g =
1
K

[Ig(θ)− α2] (15)

where

Ig(θ) ≡ E?{g2(XL)W 2(XL; θ)}
= E{g2(XL)W (XL; θ)} (16)

The minimization of (an estimate of)Ig with respect to the
biasing parameterθ is carried out using the recursion

θm+1 = θm − δθ

Î ′g(θm)

Î ′′g (θm)
, m = 1, 2, . . . (17)

which is just a one-dimensional version of (35) in Appendix II.
The reader is again referred to this appendix for definitions of
quantities in the summands of the following estimators forIg

and its derivatives (with respect toθ) that are used in (17).
These are respectively given by

Îg(θ) =
1
K

K∑

i=1

[g2(XL)W 2(XL; θ)](i)

Î ′g(θ) =
1
K

K∑

i=1

[g2(XL)W (XL; θ)Wθ(XL; θ)](i)

Î ′′g (θ) =
1
K

K∑

i=1

[g2(XL)W (XL; θ)Wθθ(XL; θ)](i)

(18)

whereXL ∼ f? in all 3 estimators above.
3) Threshold determination:The converse problem, namely

that of finding by fast simulation the value of detector thresh-
old η satisfying a prescribed FAP, is an important task that can
be readily carried out using the estimator of (12). The genesis
of the method lies in the so calledinverse ISproblem first
formulated and solved in [9]. The solution is to minimize a
“squared performance error” stochastic objective function

J(η) = [α̂g(η)− αo]2

where αo is a desired FAP. A typical example is shown in
Figure 1 for an E-AMF detector. All detection algorithms that
involve a threshold crossing will possess objective functions
that have the general behaviour shown forαo < 1, assuming
of course that the FAP estimate is (in a stochastic sense)
monotone in the thresholdη. Minimization of J with respect
to η is carried out by the algorithm

ηm+1 = ηm + δη
αo − α̂g(ηm)

α̂′g(ηm)
, m = 1, 2, . . . (19)

whereδη is a step-size parameter and the derivative estimator
in the denominator is given by

α̂′g(ηm) = − 1
K

K∑

i=1

[D e−ηD W (XL; θ)](i); ∼ f? (20)

with the prime indicating derivative with respect toη. Note
that this derivative estimator actually estimates (negative of)
the probability density function of the AMF statistic on the
left hand side of (1) under the hypothesis that target is absent.
The threshold-finding algorithm of (19) is a key component
of the fast simulation methodology.

4) Simulation gain:A useful measure of the effectiveness
of any IS procedure is the simulation gainΓ. It is the ratio
of simulation lengths required by conventional MC and IS
estimators to achieve the same error variance. The variance of
an MC estimator (W = 1) is given by(α − α2)/KMC for a
simulation lengthKMC. Hence, using (9), the IS gain for the
estimator of (6) is

Γ =
KMC

K
=

α− α2

I(ν)− α2
(21)
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with I(ν) defined in (10). Similarly, using (15), theg-method
estimator of (12) has gainΓg over MC estimation given by

Γg =
α− α2

Ig(θ)− α2
(22)

whereIg(θ) is given by (16). Note that settingθ = 1 in the
above provides gain of theg-method estimatorwithout IS.
The estimator always has a smaller variance and consequently,
Γg > Γ. Comparing (21) and (22), it is sufficient to show that
Ig < I to prove this. This is done in Appendix III.

As seen in the sequel, estimation of gain during simulation
plays an important role in mechanizing an IS methodology
that allows rare events to be studied quickly. In particular,Γg

is estimated as

Γ̂g =
α̂g − α̂2

g

Îg(θ)− α̂2
g

(23)

whereinthe required estimates are given in (12) and (18). The
denominator of the above equation is related to an estimate of
the IS variance, denoted aŝvar α̂g. Substituting (12) and (18)
into (23) and performing a little algebra yields

v̂ar α̂g ≡ Îg(θ)− α̂2
g

K

=
1

2K3

K∑

i=1

K∑

j=1
i 6=j

[yi − yj ]2

> 0 (with probability 1) (24)

where yi ≡ [g(XL)W (XL; θ)](i). The variance estimate is
asymptotically unbiased and it is easy to show, using (15) and
(24), thatv̂ar α̂g

p−→ varα̂g → 0 asK →∞, for any fixed θ.
If the IS estimator of (6) is used instead of (12), then

yi ≡ [1(A) W (X,XL; a, θ)](i) and the inequality in (24) will
not be strict, leading to a non-zero probability of instability
in gain estimation. One way of trying to prevent this from
happening is to overbias the simulation, but this can result in
underestimation of the false alarm probability. Such instabili-
ties do not occur with theg-method estimator and this is one
of its implementation advantages.

B. E-AMF and GM-STAP detection

False alarm probability IS estimators for these two detector
variants are set up in completely parallel fashion, starting with
the expression in (12). The only difference is in the definition
of the quantity D (given in (13) for the AMF detector),
while the threshold multipliers get squared. This follows by
observing from (3), (4), and (5) that all 3 detectors studied
here differ, primarily, on the right hand sides of their respective
tests. Consequently, denoting byDE andDG respectively the
D values for the two variants, this leads to

DE ≡

(
1
L

∑L
l=1 | s†R̂−1x(l)|

)2

s†(R̂−1)2s

and

DG ≡

(∏L
l=1 | s†R̂−1x(l)|2

)1/L

s†(R̂−1)2s

The corresponding FAP estimators are obtained by us-
ing the above definitions in (12) withg(XL) replaced by
exp(−η2

E
DE) and exp(−η2

G
DG) respectively. The threshold

finding algorithm in (19) is altered accordingly.

IV. M ECHANIZING THE IS ALGORITHM

A. A methodology

The various issues of the preceding sections are summarized
in an IS simulation methodology that outlines the principal
steps required for implementation of the adaptive algorithms.
It is a cautious methodology which has been used in previous
works on applications of IS.

Of interest is the extreme but realistic (and often encoun-
tered) situation where we have no knowledgewhatsoeverof
the FAPα of a detection algorithm for a given value of thresh-
old η. In such a case, referring to the objective function of
Figure 1, the basic idea of fast adaptive simulation is to travel
down the curvefrom its left side. An initial (αo, ηo) pair is
needed. It is easily obtained using conventional MC simulation
for a high value ofαo, say 0.1 (and a correspondingly low
value of ηo), usingK = 100/αo = 1000 trials according to
the well known MC thumb rule. This can be accomplished
quickly with a few experiments. The(αo, ηo) pair (whose
accuracy need not be very high) provides the starting values
for the IS procedure. It begins by forming the estimateÎg(θ) at
the thresholdηo (using 1000 trials) and locating its minimum
(possibly graphically) as a function of the biasing parameterθ.
It is advisable to search for the optimum bias, denoted asθo,
starting fromθ = 1 to avoid locating an overbiasing minimizer.
This leads, via (23), to an estimatêΓ of the maximum IS
gain available (with a possible correction forα) and results
in the quadruplet(αo, ηo, θo, Γ̂(θo)). At this stage the IS
adaptations are implemented. The threshold-finding algorithm
of (19) is implemented with initial valueηo for a new pre-
specifiedαo slightly smaller than the initialαo and using
a conservative number ofK = 100/(αoΓ̂(θo)) for the IS
trials. It is conservative because we know that simulation gain
increases with decreasing rare-event probability and hence this
number is guaranteed to provide better than the rule-of-thumb
accuracy at the newαo. Note that most of the IS gain can be
leveraged if the FAP decrements are kept small. The biasing
algorithm of (17) is implemented simultaneously usingθo as
initial value. At the end of the adaptations the resulting gain
is estimated for updatingK and a new quadruplet is obtained.
This is continued until we have a complete characterization of
false-alarm behaviour of the detector down to the desiredαo.
The procedure is summarized below.

1) Implementation:Define the set{α(p)
o }P

1
such that0.1 =

α
(1)
o > α

(2)
o > · · · > α

(P )
o = 10−7, for example.

Pre-processing:
Step 1.p = 1. Use 1000 conventional MC trials to
obtain (α(1)

o , η
(1)
o ) pair.

Step 2. Findθ
(p)
o = arg min

θ
Îg(θ) and calculate

Γ̂(p)(θ(p)
o ) using (23).

Adaptive IS:
Step 3.p = p + 1
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Step 4. Letm = 1. Setθ(p)
m = θ

(p−1)
o , η

(p)
m = η

(p−1)
o

andK = 100/(α(p)
o Γ̂(p−1)(θ(p−1)

o )).
Step 5. GenerateK secondary vectors and compute
B andD using (8) and (13).
Step 6. Implement (12), (18) using biased secondary
vectors with parameterθ(p)

m .
Step 7. Computeθ

(p)
m+1 and η

(p)
m+1 using (17) and

(19); if both algorithms have converged, setθ
(p)
o =

θ
(p)
m+1, η

(p)
o = η

(p)
m+1, Γ̂(p)(θ(p)

o ) = Γ̂(p)(θ(p)
m+1) using

(23), and go to step 3 or stop ifp = P ; otherwise
go to step 5 withm = m + 1.

At the end of simulations we have theP quadruplets
{α(p)

o , η
(p)
o , θ

(p)
o , Γ̂(p)(θ(p)

o )}P

1
.

B. Complexity reduction for IS adaptations

The methodology is simple enough but certain observations
can be made which lead to an artifice that further reduces
computational effort to a considerable extent. In rare-event
simulation of highly reliable systems that involve complex
signal processing operations, two factors contribute to simula-
tion time. The first is the rare event itself that is under study;
this is handled by suitable IS biasing techniques. The second
factor is the computational intensity of the signal processing
of the system. In STAP detectors the chief processing burden
is from inversion of large matrices. Several millions of MC
trials with as many matrix inversions are needed to estimate
low FAPs. Using an IS scheme the number of trials can
be reduced appreciably, for a single rare-event probability
estimation. However, there remains the important matter of
executing the IS adaptations of (17) and (19), using this
small number of IS trials for each iteration. These can be
computationally burdensome if the recursions are to be carried
out for severalαo values. This is where the artifice comes in.
It turns out, in contrast to conventional MC simulation, that
adaptations can be performed byreusingthe unbiased random
quantities generated for any one set of trials. Consequently it is
not necessary to run truly randomized adaptive IS algorithms.
The result will be a large savings in computational effort.

This idea is illustrated by rewriting the FAP estimator of
(12) in the form

α̂g =
1
K

K∑

i=1

[
e−η θ DU θ LNe−(θ−1)BU

](i)

; ∼ f (25)

obtained by substituting (14) into (12), replacingD and B
respectively by theirunbiasedversions denoted asDU and
BU , and observing that whereas the estimator in (12) uses
samples drawn from biased distributionsf?, the mathemati-
cally equivalent estimator of (25) operates with only unbiased
quantities, obtained viaf . Biasing is handled by the (explicit)
presence ofθ. The number of trials remains unchanged, at
K. The estimators required in (17) and (19) can be rewritten
in a similar manner. It is a straightforward exercise and is
omitted. Assuming then that the value ofK is large enough
for estimation of the targetαo (and this is guaranteed by
the methodology described above), it follows that the set
of K instances ofDU and BU employed in (25) can be

repeatedly used in the adaptations. With the complexity of
frequent regeneration thus removed, these adaptations (such
as minimization of Îg(θ) in (18)) can be extremely fast,
often requiring only a few iterations. It is assumed that a
sufficiently large pool of unbiased variables is pre-generated
to accommodateK trials.

There are two related issues that are briefly discussed here
in qualitative terms. In IS simulations carried out here (and
elsewhere), it is tacitly assumed that the number of trialsK is
also large enough to accurately estimateIg(θ). This quantity is
admittedly not a rare-event probability and its estimatorÎg(θ),
given in (18), is clearly unbiased. Nevertheless, its accuracy
should be studied in terms of its error variance, irrespective
of whether we employ the above described reuse strategy or
not. In this regard it must be pointed out that the biasing
densities used for IS simulations are being chosen to minimize
Ig(θ) (or its estimatêIg(θ)), and not to estimate it accurately.
Indeed, attempting to estimateIg(θ) accurately would lead us
to consider further biasing of the original biasing distribution.
As probably known to IS researchers, the more powerful a
biasing distribution is (in the sense of being “close” to the
unrealizable optimal biasing density that estimates the rare-
event probability exactly), the more “constant” will be the
i.i.d. random variablesyi defined after (24). Interestingly this
implies that even for smallK, the estimated variancêvar α̂g

can become small for such biasing distributions. The latter
observations accentuate the need to search for good simulation
distributions. Unfortunately, it is beyond the remit of this paper
to investigate the variance and rate of convergence ofÎg(θ) and
the dependencies of these on biasing distributions and number
of trials K. Some remarks on this issue can be found in [16].
We have confirmed the legitimacy of the reuse strategy in
several cases in two ways. Using an overkill, that is, employing
a large number of IS trials for varyingθ, it has been ascertained
that the correct value of the optimum bias does not differ
noticeably from theθo determined as above. Secondly, truly
randomized optimization algorithms have been used, with the
same conclusion.

The second issue concerns the ease with which the form of
the estimator in (25) is obtained. The reason lies in the biasing
technique used. Biasing in IS can be classed, for the purpose
of this discussion, into two types. One kind derives biased
quantities by direct parameterized transformations of unbiased
variables, such as the scaling employed here. The second is
just the complementary class, where such transformations do
not exist. Examples of the latter can include new distributions
for conducting simulations and some instances of distributions
based on large deviations theory arguments. Within the first
class, only the subset of transformations that aremany-to-one
will allow placing the IS estimator in a form such as that of
(25).

V. SIMULATION RESULTS

Implementation results of the fast simulation procedures
using theg-method are described here. A typical example
of evolution of the threshold-finding algorithm is shown in
Fig. 2 for the square-law AMF detector withL = 704 training
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vectors and space-time productN = 352. Clearly, about20
recursions of (19) appear sufficient for convergence. Note also
from this figure that the “converged” value of the threshold
for an αo acts as the initial value for the next lowerαo, as
described in Section IV-A. Although not shown here, similar
estimation results have been obtained for the E-AMF and
GM-STAP detectors. The results for the AMF detector almost
“coincide” with numerical computations of (2). As analytical
expressions or approximations for the FAPs are not available,
such a comparison is not possible for the variants. Threshold
multiplier values for the3 detectors are summarized in Fig. 3
for L = 128 and N = 64. For the E-AMF and GM-STAP
detectors the interpolations

η
E

= 0.0095 x3 − 0.1713 x2 + 1.8869 x + 1.6873

η
G

= 0.0111 x3 − 0.1985 x2 + 2.2351 x + 1.9899

for L = 128 andN = 64, and

η
E

= 0.01 x3 − 0.1865 x2 + 1.8822 x + 1.7255

η
G

= 0.0118 x3 − 0.2198 x2 + 2.2292 x + 2.0408

for L = 704 and N = 352, obtained from inverse IS results
wherex = − log10 α, can be used for estimating multipliers
for FAPs in the range10−1 to 10−7.

Performance graphs of the IS algorithms are in Figures 4
and 5, which show the estimated IS gainΓ obtained over
MC simulation and the number of trials required respectively.
The number of IS trials, although appreciably reduced in
comparison with MC, increases rapidly with decrease in false
alarm probability. From these two figures it can be observed
that, for a FAP of10−6, the square-law AMF withL = 128
andN = 64 requires1500 IS trials whereas only100 trials are
needed forL = 704 andN = 352. This can be attributed to
the fact thatD andB, the only random quantities that appear
in (12), have more concentrated density functions in the latter
case, thus causing the IS biasing to be more effective during
simulation.

Detection probabilities for all three detectors have been
estimated and compared at a FAP of10−6. For homogeneous
clutter backgrounds and non-fluctuating (Swerling 0) and
fluctuating (Swerling 1) targets, the results are in Fig. 6. The
SNR loss of the two variants compared to the AMF detector
is very slight, the maximum being0.3 db for a Swerling 0
target. Performance degradations for training data contami-
nated by nonhomogeneities consisting of interfering targets
that are assumed to have the same Doppler-angle properties
and characteristics as the primary target are shown in Fig. 7
for two Swerling 0 and Swerling 1 targets. Each interferer is
assumed to have the same steering vector and power as the
primary target. Similar results (not shown here) have been
obtained for different numbers of interferers. It is evident
that the GM-STAP detector is most robust in the presence of
interferers, enjoying (in some cases) several decibels of power
advantage over the square-law AMF detector. Consequently,
its FAP performance in these situations (though not evaluated
here) should also be relatively robust.

A. Comments

Despite the accuracy of our results, biasing by scaling has
not done as well for the variants as for the AMF detector.
Furthermore, even for the latter, IS performance should be im-
proved by a better choice of biasing scheme in order to achieve
the goal of having the required number of trials to be constant,
or at least increasing very slowly, with decrease of FAP.
This is certainly a matter for further investigation that may
pay dividends while examining other detector configurations.
Scaling was used in this work in the interest of expediency.
Some details regarding the behaviour of the scaling parameter
θ are available in [15]. Briefly, it is close to unity and has a
small spread over the range of FAPs considered. This is due
to the shape of the density functions ofB andD.

VI. CONCLUSION

A humble inroad into the use of adaptive IS algorithms
to characterize a STAP detector has been made. The AMF
detector was used for validation and results have been good.
The chief reasons for this are that we were able to invoke the
g-method and inverse IS, use a biasing strategy that could
be easily optimized adaptively, and find a way around the
difficult task of inverting large matrices several times during
simulations. As a small demonstration of the potential of IS,
two AMF detector variants that are known to be relatively
obdurate to mathematical analysis have been suggested and
characterized. Sufficient numerical results have been provided
here in order to motivate interested researchers to confirm
our findings and possibly carry out their own investigations
into the subject. There are some technical issues regarding IS
estimators that remain to be settled; however, the development
of better biasing methods is an important matter. In any case,
our hope is that application of these fast simulation techniques
to more advanced STAP configurations will also meet with
success. But this remains to be seen as we are certainly not in
position to predict what subtleties (and difficulties) these other
detection algorithms can throw up. It is clear that IS is still
in its infancy, especially insofar as its use for characterizing
modern detection algorithms is concerned.

APPENDIX I
CFAR PROPERTY

An invariance property is established that can be used to
show that certain STAP detection algorithms have FAPs that
do not depend on the data covarianceR. The proposition
given here follows quite simply from arguments contained
in the exposition of the generalized likelihood ratio STAP
detector test (Kelly’s GLRT) given in [1]. They are outlined
here for convenience of the reader2. Assume, as before, that the
primary and training data vectors have the same covariance.
Consider the variables

G ≡ s†R̂−1x and G(l) ≡ s†R̂−1x(l) (26)

2It would be helpful for the reader to refer to [1] (see also [2]). We have used
several results from this now classic paper and have attempted to maintain
the same notation.
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for l = 1, . . . , L. Using the transformationsu = R−1/2s,
y = R−1/2x, andy(l) = R−1/2x(l), leads to

G = u†R̃−1y and G(l) = u†R̃−1y(l) (27)

where R̃ ≡ R−1/2R̂R−1/2. The whitened vectorsY and
Y(l) are both distributedCNN (0, I). It turns out thatR̃
has the complex Wishart distributionCW(L,N ; 1

LI), [13].
Further, a unitary transformationU can be found which
rotates the new signal vectoru into an elementary vector
e as de = U†u, such thate = [1, 0, . . . , 0]† and where
d2 = u†u = s†R−1s. The first column ofU is the new signal
vectoru/d. The remaining columns comprise an orthonormal
basis determined, for example, by a Gram-Schmidt procedure.
Let z = U†y and z(l) = U†y(l). Applying these to (27)
yields the variables

G =
d

L
e†S−1z and G(l) =

d

L
e†S−1z(l) (28)

where S ≡ LU†R̃U. While Z and Z(l) are distributed
as CNN (0, I) and are independent,S has the distribution
CW(L,N ; I). The vectorsz and z(l) are decomposed as
z = [z

A
z

B
]T and z(l) = [z

A
(l) z

B
(l)]T where theA

components are scalar andB components(N − 1)-vector.
Correspondingly,S is decomposed as

S =
L∑

l=1

z(l)z(l)† =



S

AA
S

AB

S
BA

S
BB


 (29)

so thatS
AB

=
∑L

l=1 z
A

(l)z
B

(l)†, S
BB

=
∑L

l=1 z
B

(l)z
B

(l)†

and so on. Also

e†S−1 =
[P

AA
P

AB

]
(30)

where

P
AA

≡
(
S

AA
− S

AB
S−1

BB
S

BA

)−1

P
AB

≡ −P
AA
S

AB
S−1

BB
(31)

which follow from the Frobenius relations for inversion of
block matrices, [1]. Substituting (30) and (31) in (28) gives

G =
d

L
P

AA
y and G(l) =

d

L
P

AA
y(l) (32)

where

y ≡ z
A
−

L∑

l=1

z
A

(l)z
B

(l)† S−1

BB
z

B

y(l) ≡ z
A

(l)−
L∑

i=1

z
A

(i)z
B

(i)† S−1

BB
z

B
(l)

(33)

Conditioned on the vectorsz
B

andz
B

(l), it follows that the
random variablesY and Y (l) in (33) are (in the absence of
target) zero mean Gaussian. With a little more algebra it can
be shown, as in [1], that they are uncorrelated with variances

E
B
{|Y |2} = 1 + z†

B

( L∑

l=1

z
B

(l)z
B

(l)†
)−1

z
B

and

E
B
{|Y (l)|2} = 1− z

B
(l)†

( L∑

i=1

z
B

(i)z
B

(i)†
)−1

z
B

(l)

for l = 1, . . . , L, with E
B

denoting conditional expectation.
Further, the conditional covariance of the variablesY (l) is
given by

E
B
{Y (k)Y (n)?} = − z

B
(n)†

( L∑

l=1

z
B

(l)z
B

(l)†
)−1

z
B

(k)

for k 6= n.
Hence the set of conditionally jointly Gaussian zero mean

random variablesY and {Y (l)}L

1
have individual variances

and covariances that are functions of the random vectorsz
B

and {z
B

(l)}L

1
. The latter are all jointly independent, each

being distributed asCNN−1(0, I). The probability of any
event defined on the random variablesY and{Y (l)}L

1
in (33)

can thus be determined by performing an averaging operation
over the distributions ofz

B
and{z

B
(l)}L

1
and this probability

will be independent of the data covarianceR. This statement
is also true for the random variablesG and {G(l)}L

1
in (32)

with the caveat that any constant scaling of these variables
should leave the event unchanged. The preceding arguments
therefore constitute proof of the following
Proposition: Any STAP detection algorithm that uses only
the random variablesG and {G(l)}L

1
defined in (26) for its

description such that the algorithm itself is unchanged by
arbitrary but equal scaling of all these variables, has a FAP
which is independent of the target-free data covarianceR.

It follows immediately from this that both the E-AMF and
GM-STAP detectors have FAPs that are independent of the
covariance matrixR.

APPENDIX II
ADAPTIVE ALGORITHMS FOR2-D BIASING

From the first line of (10), theI-function is estimated as

Î(ν) =
1
K

K∑

i=1

[1(A)W 2(X,XL; ν)](i); ∼ f? (34)

and its minimization can be carried out using the 2-
dimensional adaptive algorithm

νm+1 = νm − δĴ−1
m ∇̂I(νm), m = 1, 2, . . . (35)

Here,δ is a step-size parameter used to control convergence,
and m is the index of iteration. This is a stochastic Newton
recursion. It achieves minimization of̂I by estimating a
solution of

∇̂I(ν) ≡ (Îa Îθ)T = 0

whereIa , ∂I(ν)/∂a and Iθ , ∂I(ν)/∂θ. The estimate of
the JacobianJ (which is the Hessian matrix ofI) is given by

Ĵ =

(
Îaa Îaθ

Îaθ Îθθ

)
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whereIxy ≡ ∂Ix/∂y. Starting with the second line of (10),
the variousI-functions defined above can be obtained by using
the notational equations

Ix = E{1(A) ∂W/∂x}
= E?{1(A)WWx}

and similarly

Ixx = E?{1(A)WWxx}
Ixy = E?{1(A)WWxy}

with the corresponding weighting function derivatives easily
calculated, using (7), asWx = ∂W/∂x, Wxy = ∂2W/∂x∂y,
and so on. TheseI-functions can be estimated as in (34).

APPENDIX III
GAIN OF THE g-METHOD ESTIMATOR

The proof given here is in the context of STAP detectors
and is a generalization of the one in [10] for conventional
CFAR detection algorithms. A more complete generalization
for estimators in an arbitrary rare-event setting is available in
[11].

When no IS is used (W= 1), then Ig = E{g2(XL)} <
E{g(XL)} = α. To show thatIg < I ≡ I(ν) (the biasing
vector is omitted for convenience) with IS, some additional
notation is useful. LetU ≡ |s†R̂−1X|2 and letV denote the
right hand side of any of the three STAP detectors, excluding
the multiplier. We bear in mind thatU is a function ofX and
XL, andV a function ofXL. Then, in the absence of target,
α = P (U ≥ η V ) and (10) can be written as

I = E{1(U ≥ η V )W (X,XL)}
with W defined in the first line of (7). For theg-method
estimator, we can write

g(xL) = P (U ≥ η V | XL = xL)
= E{1(U ≥ η V ) | XL = xL}
=

∫
1(u ≥ η v)f(x|xL) dx

=
∫

1(u ≥ η v)Wc(x,xL) f?(x|xL) dx

whereWc(x,xL) ≡ f(x|xL)/f?(x|xL). Then

g2(xL) ≤
∫

1(u ≥ η v)W 2
c (x,xL) f?(x|xL) dx

=
∫

1(u ≥ η v)Wc(x,xL) f(x|xL) dx

by Jensen’s inequality. ThereforeIg, defined in (16), is given
by

Ig =
∫

g2(xL)W (xL) f(xL) dxL

≤
∫ ∫

1(u ≥ η v)Wc(x,xL)W (xL) f(x|xL)

· f(xL) dx dxL

=
∫ ∫

1(u ≥ η v)W (x,xL) f(x,xL) dx dxL

= I.
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